
Behavioral Plasticity Through the Modulation of

Switch Neurons

Vassilis Vassiliades, Chris Christodoulou

Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus

Abstract

A central question in artificial intelligence is how to design agents ca-
pable of switching between different behaviors in response to environmental
changes. Taking inspiration from neuroscience, we address this problem by
utilizing artificial neural networks (NNs) as agent controllers, and mecha-
nisms such as neuromodulation and synaptic gating. The novel aspect of
this work is the introduction of a type of artificial neuron we call “switch
neuron”. A switch neuron regulates the flow of information in NNs by se-
lectively gating all but one of its incoming synaptic connections, effectively
allowing only one signal to propagate forward. The allowed connection is
determined by the switch neuron’s level of modulatory activation which is
affected by modulatory signals, such as signals that encode some informa-
tion about the reward received by the agent. An important aspect of the
switch neuron is that it can be used in appropriate “switch modules” in or-
der to modulate other switch neurons. As we show, the introduction of the
switch modules enables the creation of sequences of gating events. This is
achieved through the design of a modulatory pathway capable of exploring
in a principled manner all permutations of the connections arriving on the
switch neurons. We test the model by presenting appropriate architectures
in nonstationary binary association problems and T-maze tasks. The results
show that for all tasks, the switch neuron architectures generate optimal
adaptive behaviors, providing evidence that the switch neuron model could
be a valuable tool in simulations where behavioral plasticity is required.

Keywords:

Email addresses: v.vassiliades@cs.ucy.ac.cy (Vassilis Vassiliades),
cchrist@cs.ucy.ac.cy (Chris Christodoulou)

To appear in Neural Networks, doi: 10.1016/j.neunet.2015.11.001 (accepted, in press)

switch neuron, behavioral plasticity, neuromodulation, gating, adaptive
behavior, reinforcement learning

1. Introduction

Adaptive organisms have the remarkable ability of adjusting their behav-
ior in response to changes in their environment. Such behavioral plasticity is
believed to be linked with modifications in the neural circuitry that produces
the behavior. These modifications are likely to be caused by mechanisms that
go beyond the classical neurotransmission (of excitation or inhibition), such
as neural plasticity (Churchland and Sejnowski, 1992; Binder et al., 2009)
and neuromodulation (Katz, 1999). Neural plasticity refers to the capacity
of neural circuits for functional or organizational modifications due to pre-
vious activity or damage (Churchland and Sejnowski, 1992; Binder et al.,
2009). For example, synaptic plasticity, i.e., the strengthening or weakening
of synapses, is a major process that underlies learning and memory (Mar-
tin et al., 2000) and has been validated through neural recordings (see for
example Kandel and Tauc, 1965; Bliss and Lømo, 1973; Markram et al.,
1997; Bi and Poo, 1998). Neuromodulation refers to the process where a
small number of neurons can influence (modulate) the intrinsic properties of
multiple synapses or neurons, through the diffusion of certain neurotransmit-
ters known as neuromodulators (Katz, 1999; Marder and Thirumalai, 2002;
Binder et al., 2009). Neuromodulation and neural plasticity can be com-
plementary. For example, the neuromodulator dopamine is believed to play
a major role in operant conditioning (Thorndike, 1911; Skinner, 1938) as it
was found to encode a reward prediction error (RPE; see for example Schultz,
1998) analogous to temporal difference (TD) error in reinforcement learning
(RL, Sutton and Barto, 1998).

While neuromodulation can be used to gate plasticity and synaptic trans-
mission, a growing number of studies provide evidence that supports the exis-
tence of other types of synaptic gating mechanisms, capable of regulating in-
formation flow between various sets of neurons (see Gisiger and Boukadoum,
2011, and references therein). Such mechanisms should not be thought of
as simply interrupting information flow, as they can also act as permissive
gates (Katz, 2003). For example, certain neurons from an area of the brain
called the nucleus accumbens (NAcc) were found to implement this type of
gating. These NAcc neurons are bistable, meaning that they exhibit oscil-
lations between two discrete states: an “up” state (where the membrane

2

potential is depolarized) during which the neuron generates action poten-
tials (spikes), and a resting, “down” state (where the membrane potential is
hyperpolarized) during which the production of action potentials is absent
(O’Donnell and Grace, 1995; Grace, 2000). They were found to be part of
a gating mechanism that controls whether information from the prefrontal
cortex (PFC) is allowed to pass through to the ventral pallidum and fur-
ther, to the thalamus. More specifically, input from PFC neurons arrives at
NAcc neurons, but only those that are in their up state allow the input to
propagate forward. What modulates the state of the NAcc neurons is an
extra input from the hippocampus (HPC). That is, only the NAcc neurons
that are stimulated by HPC neurons enter their depolarized state and sub-
sequently, fire upon receiving input from the PFC (Grace, 2000). For this
reason, these neurons are said to implement a type of AND gate, since they
fire only if they receive input from both the PFC and the HPC (Gisiger and
Boukadoum, 2011). Various other logic gates, such as NOT, Switch, XOR,
and Flip-Flop, can be implemented by neural circuits, as demonstrated by
Vogels and Abbott (2005).

Apart from bistable neurons, which were found to be abundant in the
cortex, other gating mechanisms have been observed in theoretical or ex-
perimental data, that feature inhibitory neurons or even oscillations (for ex-
amples see Anderson and Van Essen, 1987; Olshausen et al., 1993; Burchell
et al., 1998; Floresco and Grace, 2003; Barbas and Zikopoulos, 2007). In
all observations and models, certain “gatekeeper” circuits influence synap-
tic transmission (Gisiger and Boukadoum, 2011). As mentioned above, it
has been observed that for NAcc neurons the gatekeepers originate in the
HPC. For cortex neurons, experimental evidence suggests that the gatekeep-
ers could originate in the cortex, thalamus and basal ganglia (Gisiger and
Boukadoum, 2011). Gisiger and Boukadoum (2011) present a theoretical
model where a copy of the gating signal produced by one gatekeeper circuit,
can be fed as an input to another gatekeeper circuit. A key observation in
that model is the existence of two types of neural pathways: the first imple-
ments normal information processing, whereas the second is formed by the
gating mechanisms. They hypothesize that such interacting gating circuits
could create sequences of gating events that are responsible for the produc-
tion of structured behavior.

Gruber et al. (2009) used multichannel recordings to investigate rats dur-
ing spatial exploration of an operant chamber, and during reward-seeking
afterwards in the same chamber. They observed that during spatial explo-

3

ration, the activities of neurons in the NAcc core, i.e., the inner part of the
NAcc which is located within the basal ganglia (Gerfen and Wilson, 1996,
Chap. 2, p. 372), synchronized with the activity of HPC neurons; how-
ever, during reward-seeking, they instead synchronized with the activity of
PFC neurons. This suggested that the NAcc core can dynamically select its
inputs according to environmental requirements, as it is able to switch its
synchronization in a task-dependent manner (Gruber et al., 2009). It has
to be noted that the basal ganglia is the structure believed to be associated
with action selection (Redgrave et al., 1999) and RL (Barto, 1995; Montague
et al., 1996; Schultz et al., 1997). For example, Redgrave et al. (1999) pro-
posed that the action selection problem of vertebrates is solved by a central
“switching” mechanism that resides in the basal ganglia. It has also been
recently suggested that the release of a peptide called “substance P” in the
striatum (i.e., the primary input nucleus to the basal ganglia), allows for
rapid switching between actions in action sequences (Buxton et al., 2015).

Gating mechanisms can be seen as implementing a type of “on-off” switch
by allowing or interrupting communication between brain regions. Inspired
by these gating phenomena in the brain, which seem to play a significant role
in various processes such as working memory (Williams and Goldman-Rakic,
1995), attention (Usher et al., 1999), and decision making (Cisek et al., 2009),
we ask whether we could design an abstract computational model that can
be used for the purpose of adaptive behavior. For this reason, we adopt the
artificial intelligence agenda of rational decision making (Russell and Norvig,
2003), where an agent tries to maximize its reward intake (Sutton and Barto,
1998). The agent is controlled by artificial neural networks (NNs), as they are
very well suited for simulating adaptive behavior, due to the possibility of im-
plementing memory (through recurrent connections), and learning (through
plasticity rules). In this paper, we do not focus on learning behavior per se,
but rather on behavior exploration. More specifically, a central hypothesis of
this work is that once some general neural circuits are established for certain
behaviors through possibly neural plasticity mechanisms (or other methods),
neuromodulation alone can be used to switch these behaviors by selectively
gating various pathways accordingly.

We implement such a gating mechanism by introducing a novel type of an
artificial neuron we call “switch neuron” that can be used in NNs. Instead of
implementing an on-off switch for certain connections, this unit selects which
one of its incoming connections is allowed to propagate its signal forward, by
opening its gate while closing the gate of all others. The role of the switch

4

neuron is to endow an agent with different behaviors and the ability to flexibly
switch them as needed. The switching activity is controlled by modulatory
signals that encode some information about the reward received by the agent.
In order to create sequences of gating events and structured exploration, we
additionally introduce a way for switch neurons to modulate other switch
neurons. This is done by placing them in appropriate switch modules. We
assess our model by designing appropriate switch neuron architectures for
nonstationary association tasks (Section 3.1) and discrete T-maze problems
(Section 3.2). We show in all tasks that these architectures perform optimal
deterministic exploration when the goal changes, therefore, illustrating that
our approach advances the field of NNs by creating more adaptive networks.

Note that the switch neurons of this paper should not be viewed in a
strict biological sense, but rather in a functional sense. They are inspired by
biological phenomena, but they are artificially constructed to perform certain
computations. Thus, throughout this study, we use the word “neuron” for
the switch neuron, but note that this is a purely artificial unit. In other
words, despite the strong biological inspiration for the design of the switch
neuron model, our paper does not contribute to any advances in biological
areas. If mechanisms similar to the switch neuron model exist in the brain,
they could either be in the form of individual cells, population of cells, or
groups of interconnected neurons.

The remainder of the paper is organized as follows. Section 2 describes
our approach by introducing the switch neuron and switch module. These
are integrated in NN architectures designed specifically for the experiments
reported in Section 3 along with the results. Section 4 discusses our results
and directions for future work, and the conclusions are given in Section 5.

2. Approach

2.1. Artificial neurons

The usual formulation of an artificial neuron involves the integration of
incoming signals y := (y1, y2, ..., yN) and parameters w := (w1, w2, ..., wN)
through an accumulation or integration function G(.) resulting in the neu-
ron’s activity a(t) := G(y,w) at time t. This activity is then fed through an
activation function F (.) resulting in the neuron’s output y(t) := F (a(t)).

In the work of Soltoggio et al. (2008), the distinction between standard
neurons and modulatory neurons is made. Standard neurons can be modeled
as above, with their output interpreted as a “standard signal”. Modulatory

5

neurons, on the other hand, transform the incoming standard signals by
emitting special “modulatory signals” that affect the synaptic plasticity of
a target neuron. A critical modeling aspect is that both types of neurons
have an internal value for a standard activation a(std)(t) and a modulatory
activation a(mod)(t). In this work, we adopt a more flexible formulation where
connections instead of neurons can either be standard or modulatory. This
way the same neuron can emit both a standard and a modulatory signal if
needed. This change is important for the modeling of switch modules, as it
will be described in Section 2.4.

Before introducing the switch neuron model, we start with a more general
formulation of the neurons that are used in this work. An active neuron
ni (i.e., hidden or output) consists of two parts that are responsible for the
calculation and storage of its standard activation and modulatory activation:

ni := 〈s(std)i , s
(mod)
i 〉 (1)

s
(std)
i and s

(mod)
i are tuples that hold the parameters for computing and storing

the standard output and the modulatory output of the neuron respectively,
and are represented as

s
(x)
i := 〈F (x)

i (.), G
(x)
i (.), a

(x)
i (t), y

(x)
i (t), z

(x)
i ,w

(x)
i ,d

(x)
i 〉 (2)

where for part (x) (this can be the standard or modulatory part) each com-
ponent is described below by omitting the (x) index for simplicity: Fi(.)
is the activation function, Gi(.) is the integration function, ai(t) := Gi(.)
is the activity at time t, yi(t) := Fi(ai(t)) is the output at time t, wi :=
[w1i, w2i, ..., wNi]

T is a vector that contains the weights of the presynaptic
connections, di := [d1i, d2i, ..., dNi]

T is a vector that contains the delays of the
presynaptic connections where N is the number of presynaptic connections
and dji ∈ {0, 1, 2, ..., dmax} with dmax being the maximum delay a connection
could have, and zi := [yi(t− 1), ..., yi(t−max(∀jdij))]T is a vector that con-
tains the previous outputs of neuron i, with max(∀jdij) being the maximum
delay from all outgoing connections of neuron i. Note that in the case of
a feedforward connection, the delay dji takes the value of zero. Also note
that in the case of feedforward networks the vector zi does not exist since
there is no need to store the previous outputs, and in the case of normal
recurrent networks, where the delay of all connections is equal to one, the
vector zi contains only one element, i.e., yi(t − 1). As it will be shown in
Section 3.2 the connection delays can be useful for disambiguating the state

6

in partially observable problems. Various models can be implemented by
substituting different integration and activation functions for both the stan-
dard and modulatory part. The activity at time t (standard or modulatory
accordingly) is computed as

ai(t) := Gi(y(t− di),wi) (3)

where y(t− di) := [y1(t − d1i), y2(t − d2i), ..., yN(t − dNi)]T is a vector that
contains the outputs of the presynaptic neurons at times t− di.

In the experiments we present in this work (Section 3), in all neurons
apart from the switch neurons: (i) the modulatory integration function is

the “weighted-sum”, i.e., a
(mod)
i (t) =

∑
wji∈Modwji ·y

(std)
j (t−dji) (where Mod

is the set of incoming modulatory connections), and (ii) the modulatory acti-

vation function is the “hyperbolic tangent”, i.e., y
(mod)
i (t) = tanh(a

(mod)
i (t)).

Note that although we use these functions based on the work by Soltoggio
et al. (2008), in our experiments the modulatory parts of all neurons except
for the switch neurons do not affect the computation of the NN architectures,
since modulatory connections arrive only at switch neurons (see Section 3);
therefore, any function could be used without a change in the outcome.

2.2. The switch neuron model

The rationale behind our switch neuron model is that the incoming signals
are not integrated, but instead only one is allowed to be propagated forward,
while all the others are blocked. The switching activity of the neuron is influ-
enced by modulatory signals. More specifically, modulatory signals change
the level of modulatory activity of the switch neuron and the level of modula-
tory activity determines from which of its incoming connections the signal is
allowed to be propagated forward. The functional role of the switch neuron
is to endow the agent with different behaviors by enabling information flow
through different parts of the network.

A switch neuron first computes its modulatory part and then its stan-
dard part. Formally, its standard part uses the “linear” activation function
y
(std)
i (t) = a

(std)
i (t), while the integration function calculates its standard ac-

tivation as
a
(std)
i (t) = wji · y(std)j (t− dji) (4)

where a
(std)
i (t) is the standard activation of the switch neuron at time t,

y
(std)
j (t) is the standard output of the jth presynaptic node at time t and

7

wji is the weight of the (standard) connection. The jth index is selected
according to:

j =

{
k
∣∣∣ k − 1

n
≤ y

(mod)
i (t) <

k

n
, ∀k = 1, 2, ..., n

}
= bn · y(mod)i (t)c (5)

where n ∈ N+ is the number of incoming standard connections and y
(mod)
i (t) ∈

[0, 1) is the modulatory output of switch neuron i at time t. This equation ef-
fectively partitions the range of modulatory output [0, 1) into n homogeneous
intervals, with the size of each interval being equal to 1/n. It also implies
an ‘order relation’ between the connection indices, i.e., connection k comes
after connection k− 1, meaning that if currently connection k− 1 is selected
and the next modulatory output is at most 1/n greater than the current,
then the next selected connection will be connection k. Note that the level
of modulatory activity can change this index and consequently the function
of the switch neuron. Therefore, the switch neuron could be viewed as pos-
sessing a type of intrinsic plasticity (Triesch, 2007). This is also consistent
with work showing that neuromodulation can alter the intrinsic properties
of neurons (see Marder and Thirumalai, 2002, and references therein).

An important design decision is that the modulatory signals do not di-
rectly decide the selected connection of the switch neuron, since such an
approach might have been difficult to control. Instead, they do so indirectly
by determining the change in the modulatory activity of the switch neuron.
Concretely, the modulatory part of the switch neuron uses the linear activa-
tion function y

(mod)
i (t) = a

(mod)
i (t) and an integration function that acts as a

perfect integrator of the weighted-sum of the incoming modulatory signals

a
(mod)
i (t) = a

(mod)
i (t− 1) +

∑
wji∈Mod

wji · y(std)j (t− dji) (6)

but ensures that the activity is kept in the range [0, 1) using

a
(mod)
i (t) = frac(a

(mod)
i (t)) = a

(mod)
i (t)− ba(mod)i (t)c (7)

It is worth noting that the initial value of the modulatory activity is set to
a
(mod)
i (0) = 1/(2n), i.e., in the “middle” of the first interval. Although in

this work we do not consider any randomness in the modulatory signals, by
setting the modulatory activation in the middle of an interval, we provide
some robustness to possibly noisy modulatory signals.

8

Equation 7 can be seen as connecting the maximum with the minimum of
the range [0, 1) by stripping away the integer part of a

(mod)
i (t). This effectively

implements a ‘cyclic’ relation in the space of indices, a biological evidence of
which is still to be found. This means that if connection n (i.e., the last one)
is currently selected and the next modulatory output is at most 1/n greater
than the current, then the next selected connection will be connection 1
(i.e., the first one). Similarly, if connection 1 is currently selected and the
next modulatory output is at most 1/n less than the current, then the next
selected connection will be connection n (see Figure 1).

2.3. Modulatory signal

The equations of the modulatory integration function of the switch neu-
ron show that both positive and negative modulatory signals can explore the
connection indices. In particular, if the modulatory signal has the value of
+1 or -1 (and scaled by a weight of 1/n), this is interpreted as an ‘instruction’
for the switch neuron to select the next index in a “clockwise” or “counter-
clockwise” manner respectively (see Figure 1). A signal with magnitude less
than ±1 does not ensure this, whereas a signal with magnitude greater than
±1 would skip at least an index (depending on n). Therefore, the intensity
of the signal (coupled with the weight) determines the index to be selected.
Note that since the modulatory integration function of the switch neuron be-
haves as a perfect integrator, the modulatory signals could accumulate before
switching to the next index. That is, switching could occur after receiving
multiple modulatory signals.

What described above shows that the modulatory signals of switch neu-
rons differ from modulatory signals devised for synaptic plasticity rules (see
for example, Soltoggio and Stanley, 2012), that resemble a RPE, in the sense
that there is no reinforcing of pathways when a positive signal is used. A zero
signal indicates that the current behavior must not change. However, both
positive and negative signals elicit a change in behavior, i.e., an exploratory
action (if the NN architecture is appropriate) if they manage to significantly
alter the modulatory activity of a switch neuron.

2.4. The switch module: a module of three neurons

In order to enable the creation of sequences of gating events, which could
potentially confer benefits in sequential decision making problems, there
needs to be a way for switch neurons not only to be modulated, but also
to be able to modulate other switch neurons. This, however, implies that

9

Figure 1: Modulatory “wheel”. The wheel (top) shows how the level of modulatory
activation of the switch neuron (bottom) affects its decision. The switch neuron has 3
incoming connections, thus, it partitions the range [0, 1) into 3 homogeneous intervals of
size 1/3, one for each incoming connection. Initially, connection 2 (C2) is selected as
the modulatory activation falls in the range [1/3, 2/3). Upon the reception of a positive
signal (+1), which is multiplied by the weight 1/3, the modulatory activation falls in the
range [2/3, 1), thus, connection 3 (C3) is selected. Another positive signal makes the
modulatory activation fall in the range [0, 1/3), thus, selecting connection 1 (C1). Positive
modulatory signals have this clockwise behavior, whereas negative ones behave similarly
in a counterclockwise manner.

the switch neurons ‘need’ to emit two distinct signals, a standard and a
modulatory one, with both being calculated by different functions. It is im-
portant to note that this is not equivalent to having a neuron calculating
its (standard) output and using two outgoing connections from it, a stan-
dard and a modulatory one, since both connections would carry information
about the same signal. This stems from the fact that artificial neurons are
traditionally designed to output a scalar value, i.e., their standard output,
y
(std)
i (t), and not a vector of values. That is, the modulatory output of the

neurons, i.e., y
(mod)
i (t), is not transmitted to other neurons, and in previous

work it has been used locally to adjust the strength of synaptic plasticity
(Soltoggio et al., 2007, 2008; Soltoggio, 2008; Dürr et al., 2008, 2010; Soltog-
gio and Jones, 2009; Risi et al., 2009, 2010; Risi and Stanley, 2012; Sher,
2012; Silva et al., 2012; Arnold, 2011; Arnold et al., 2012, 2013; Tonelli and
Mouret, 2011b,a, 2013; Nogueira et al., 2013; Ellefsen, 2013; Coleman et al.,
2014; Lehman and Miikkulainen, 2014; Mouret and Tonelli, 2014; Yoder and
Yaeger, 2014). Therefore, in order to ensure the simplicity of implementation

10

and to make the model more widely applicable, it was deemed necessary to
make the following change: a switch neuron is replaced with a module of
three neurons (described below), only when interactions between switch neu-
rons need to be modeled. More specifically, the switch neuron that ‘needs to
emit’ its own modulatory signal is replaced with this three-neuron module,
which we refer to as a “switch module” throughout this paper.

Figure 2: The switch module contains three neurons. The “switch neuron” has n incom-
ing standard connections (shown by solid lines) and can be seen as endowing an agent
with different behaviors. The “modulating neuron” is responsible for altering the level of
modulatory activation of the switch neuron and for this reason it connects to the switch
neuron with a modulatory connection (shown by a dashed line). The “integrating neuron”
integrates the modulatory signals emitted from the modulating neuron, using a standard
connection that has the same weight as the modulatory one, which is equal to 1/n, and
fires when its activation exceeds a threshold value; this neuron is responsible for connecting
different switch modules/neurons.

The first neuron in the switch module is the switch neuron and is de-
scribed in Section 2.2. The second neuron is responsible for altering the level
of modulatory activity of the switch neuron, therefore, being referred to as
“modulating neuron”. The role of the modulating neuron is to alter the be-
havior of the agent when needed. Finally, the third neuron is responsible for
integrating a copy of the signal emitted by the modulating neuron. It out-
puts a signal only when a certain threshold is reached; it then immediately
resets to its initial state. The role of the third neuron is for connecting differ-
ent switch modules/neurons, effectively providing a way to modulate other

11

switch neurons. This third neuron is referred to as “integrating neuron”.
The switch module is illustrated in Figure 2 where we show how the three
neurons connect with each other, while in Figure 3 (right box), we show how
the switch modules can be used to modulate one another. We now proceed
to a detailed description of the modulating and integrating neurons.

2.4.1. The modulating neuron

The modulating neuron uses the weighted-sum integration function and
the linear activation function for calculating its standard activation and stan-
dard output respectively. Therefore, its (standard) output is computed as

y
(std)
i (t) = a

(std)
i (t) =

∑
wji∈Std

wji · y(std)j (t− dji) (8)

where Std is the set of incoming standard connections. The modulating
neuron is connected to the switch neuron via a modulatory connection and
to the integrating neuron via a standard connection, both having a shared
weight value equal to 1/n, where n is the number of incoming connections of
the switch neuron (see Figure 2).

This special connectivity was designed to permit the following two desired
characteristics. The first is related to the modulation of an individual switch
neuron and the exploration of its states; it is achieved by the modulatory
connection from the modulating neuron. The second characteristic is related
to interactions between switch neurons. By feeding the (weighted) signal of
the modulating neuron to the integrating neuron, the latter becomes able
to ‘know’ when all the states of the switch neuron (i.e., n connections) have
been explored. It could then emit a signal to other parts of the network.

2.4.2. The integrating neuron

The integrating neuron integrates the signals received by the modulating
neuron and fires when some threshold is reached. The integration function
is a perfect integrator of the weighted-sum of the incoming standard signals:

a
(std)
i (t) = a

(std)
i (t− 1) +

∑
wji∈Std

wji · y(std)j (t− dji) (9)

The activation function is the following:

y
(std)
i (t) =


1 if a

(std)
i (t) ≥ θ

−1 if a
(std)
i (t) < −θ

0 otherwise

(10)

12

where θ > 0 is a (positive) threshold value that is set to 1 in all experiments.
This neuron resembles integrate-and-fire neurons (Lapicque, 1907; Tuckwell,
1988), but has a symmetric form in the sense that the output can be both
positive or negative. When the output is not zero, i.e., 1 or -1, the activation
of the neuron is reset to a baseline value, b, which is set to 0 in all experiments
of this study.

a
(std)
i (t) =

{
0 if y

(std)
i (t) = 1 or y

(std)
i (t) = −1

a
(std)
i (t) otherwise

(11)

2.5. Figure simplification

In order to simplify the figures in the sections that follow, we present
(Figure 3) a depiction of how a connected subnetwork (i.e., a network that
is part of a larger NN) of switch neurons is illustrated (in the figures of this
paper) and how it can be actually implemented (conceptually and in source
code). Solid lines represent standard connections and dashed lines represent
modulatory connections. Whenever we illustrate (in a figure) that there is

A

B

C

D
E

Σ Σ

Σ Σ

A
A

B

C

D

E

Modulating

Neuron

Integrating

Neuron

Switch

Neuron

C+B

Figure 3: Illustration and implementation of switch neurons and switch modules. The
left box shows how a network of switch neurons is illustrated throughout this work. The
right box shows how this network can be implemented. Solid lines represent standard
connections and dashed lines represent modulatory connections. Whenever a modulatory
connection is shown to be flowing out from the top of a switch neuron (see left box) means
that a switch module needs to be used (see right box). See text for more details.

a modulatory connection flowing out (e.g., from the top or bottom) of a

13

switch neuron (see the example in Figure 3, left box), then that switch neu-
ron is substituted (in the implementation) with the switch module described
in Section 2.4 as shown in Figure 3. In the example of Figure 3, we illus-
trate some external signals A and C, and an internal signal B as modulatory
signals, however, we implement them as standard signals. This is due to
the fact that the switch neuron, on which they are connected, interacts with
another switch neuron via an outward connection. Signals E and D are both
illustrated and implemented as modulatory signals without using any switch
module. This is because their connecting switch neuron does not emit any
modulatory signal, so not using the switch module slightly reduces the com-
plexity of the network. Figure 3 illustrates that each modulating neuron has
the role of accumulating all incoming modulation, converting it into a mod-
ulatory signal that is fed into the switch neuron, and propagating it forward
as a standard signal that is fed into the integrating neuron.

2.6. Modulatory behavior

In this study, we use two modulatory topologies that affect the modula-
tory behavior of the network in a different manner. The first topology enables
parallel/simultaneous modulation of multiple switch neurons by an external
signal that is roughly related to the reward obtained by the agent (or a RPE
signal). This is shown in Figure 4a, where solid lines represent standard
connections and dashed lines represent modulatory connections. Unless an
individual modulatory connection is gated, a continuous stream of non-zero
reward signals modulates all switch neurons at every time step.

The second topology, shown in Figure 4b, organizes the switch neurons
one after the other along a modulatory pathway. The result is that switch
neurons can modulate other switch neurons sequentially. That is, in this
topology, modulation does not only come from an external source, but it
can also be calculated internally by the network. This is motivated and in-
spired by studies on intrinsic neuromodulation (for example, see Katz and
Frost, 1996), as well as what Gisiger and Boukadoum (2011) call “the sec-
ond pathway” that “could play various roles”. In order to understand how
often each neuron on this pathway is modulated, suppose that Switch1 has
n1 incoming connections, Switch2 has n2 incoming connections,..., Switchi
has ni connections. External modulation modulates Switch1, Switch1 mod-
ulates Switch2, Switch2 modulates Switch3,..., Switchi−1 modulates Switchi.
Now assume that a continuous stream of -1 (or +1) external modulation is
received. This means that Switch1 will be modulated at every time step,

14

(a) Topology for parallel (external-only)
modulation.

(b) Topology for sequential (external and
internal) modulation.

Figure 4: Modulatory topologies. The architecture in (a) is an example where the external
reward signal modulates all switch neurons. As a result, all switches are modulated in
parallel at every time step if the reward signal is non-zero. The architecture in (b) is an
example where all switches reside on a modulatory pathway and thus, they are modulated
in sequence: the external reward signal modulates Switch1, Switch1 modulates Switch2,
and generally Switchi−1 modulates Switchi. As a result, if the reward signal is always
-1 or +1, Switch1 is modulated at every time step, Switch2 is modulated every n1 steps,
and generally Switchi is modulated every

∏i−1
j=1 nj steps. Solid lines represent standard

connections and dashed lines represent modulatory connections.

Switch2 will be modulated every n1 time steps, Switch3 will be modulated
every n1 × n2 time steps, and generally, Switchi will be modulated every
n1×n2× ...×ni−1 =

∏i−1
j=1 nj time steps. This implies that this type of mod-

ulatory connectivity can explore all permutations of the connections, which
are equal to

∏i
j=1 nj, in an ordered manner. This is useful because a different

permutation might mean a different behavior policy for an agent. Note that
the standard signals could come from any input, hidden or output neurons.
Similarly, the (standard) signal from switch neurons could be fed to other
hidden or output neurons.

3. Experiments and results

In the following sections we present our experimental setup, the NN ar-
chitectures used and the results obtained in two sets of domains. The first

15

is a broad set of association problems and the second is a set of T-maze do-
mains. Both types of problems involve reward associations that are hidden
from the agent and change with time.

3.1. Nonstationary binary association problems

The first set of domains we investigate is association problems. The gen-
eral setting is to make an agent learn the random associations between binary
input patterns and binary output patterns based on feedback that comes in
the form of a reward signal. These associations can be re-randomized at
certain points in time, requiring from the agent to unlearn the previous as-
sociations and re-learn the new ones. It is important to note that the reward
signal is a scalar value and not a vector that represents the error of each out-
put variable as it is done in supervised learning / classification settings. For
this reason, the agent needs to be able to explore all possible output patterns
for each given input pattern. The reward signal is not delayed, therefore,
there is no temporal credit assignment problem (Sutton and Barto, 1998).

The number of inputs is n and the number of outputs is m. There are
four types of association problems: (i) one-to-one, where each of the n inputs
needs to be associated with one of the m outputs, (ii) one-to-many, where
each of the n inputs needs to be associated with one of the 2m possible
output patterns, (iii) many-to-one, where each of the 2n input patterns needs
to be associated with one of the m outputs, and (iv) many-to-many, where
each of the 2n input patterns needs to be associated with one of the 2m

possible output patterns. Therefore, in each case, all possible input vectors
need to be associated with some output vectors. The number of possible
output vectors corresponds to the number of actions available to an agent
in a multi-armed bandit setting (Robbins, 1952; Gittins, 1979; Sutton and
Barto, 1998). Table 1 shows the number of possible association sets for every
type of association problem and the expected number of time steps needed
to learn a random association set of each type.

3.1.1. Simulation

The experiments are performed as follows. Initially, all input vectors
are randomly associated with an output vector (i.e., action) accordingly.
Each input vector is presented sequentially to the network, the agent then
selects an action (according to the NN architecture), the action is translated
to the corresponding output vector, and the episode ends. If the output

16

Table 1: Types of association problems, their corresponding number of possible association
sets and the (expected) time steps needed to learn a random association set of each type.
n is the number of inputs and m is the number of outputs.

Type of association problem
Number of possible Time needed to learn

association sets (in steps)

One-to-One mn n(m− 1)
One-to-Many (2m)n n(2m − 1)
Many-to-One m2n 2n(m− 1)

Many-to-Many (2m)2
n

2n(2m − 1)

vector chosen by the agent was correct for the given input, i.e., the input-
output pair exists in the association set, then a reward of 0 is provided,
otherwise a reward of -1. This reward function was designed to be suitable
with the modulatory signals the switch neurons ‘understand’, i.e., only non-
zero modulation changes the behavior. Before feeding the next input to
the network, a second activation (forward propagation) is done by keeping
the current input active and setting the reward signal appropriately to its
corresponding input. This is necessary for allowing the network to adjust its
internal state if needed. At that point the new episode begins and the next
input is fed to the network. After repeating this procedure for a number of
episodes, the association set is randomized and the network needs to adapt
by unlearning the previous associations and learning the new ones. This is
repeated until a maximum number of episodes is reached.

The experiments are run for 100 independent trials. For all types of prob-
lems apart from the many-to-many problems, the number of episodes is set
to 2000 with the association sets being randomized every 500 episodes. For
the many-to-many problems, these numbers are multiplied by 10, to accom-
modate the exponentially larger number of associations. In particular, the
number of episodes is set to 20,000 and the association sets are randomized
every 5000 episodes. Each episode lasts one step and the reported perfor-
mance is the average reward per episode over all trials.

3.1.2. NN architectures

Figure 5 presents a switch neuron network that optimally solves one-to-
one association problems. For simplicity we use n = m = 3, however, we
should emphasize that it is straightforward to extend the architecture for an

17

Input 1

Input 2

Input 3

*

*

*

r

Σ

+10

0
-10

+10

0
-10

+10

0
-10

Figure 5: Architecture that solves one-to-one association problems with number of stimuli
n and actions m equal to three. Solid lines represent standard connections and dashed
lines represent modulatory connections. The action is decided from the activation of the
linear output unit, which is bounded in [−10, 10]. The current state of switch neurons
associates Input 1 with Action 1, Input 2 with Action 3, and Input 3 with Action 2.

arbitrary number of stimuli/inputs (n) and actions/outputs (m). The NN
uses n + 1 input neurons (n for all the stimuli, and one for the modulation
signal), n switch neurons and product units (one for each input neuron) and
a single output neuron. The number of connections is n(m + 4). The m
actions are encoded by the linear output neuron. An alternative architecture
where m binary output nodes are used to encode the m actions would require
a change in the switch neuron model in a way that it gates its outgoing
connections instead of its incoming connections. The linear output neuron
is bounded in the range [−10, 10]. In the example, where m = 3, Action 1 is
selected if the output is in (+3.3,+10], Action 2 is selected if the output is
in [−3.3,+3.3], and Action 3 is selected if the output is in [−10,−3.3). For
this reason, the weights take the values of +10 (for selecting Action 1), 0 (for
selecting Action 2), and -10 (for selecting Action 3). Note that if a different
activation function is used, then these weights could change. The current
states of the switch neurons in the figure associate Input 1 with Action 1,
Input 2 with Action 3, and Input 3 with Action 2. Note that each input
neuron is connected with its corresponding switch neuron using not a single
connection, but a number of connections equal to the number of actions, i.e.,
three. Therefore, if the problem requires more actions then more connections
need to be added each one corresponding to each action with an appropriate
weight, as discussed above. The role of the product unit is for gating the
modulation signal. More specifically, if the reward signal is non-zero, then

18

modulation is applied to the switch neuron whose input was active. The
modulatory weight is equal to 1/m in order to be able to cycle through all
incoming connections when a −1 modulatory signal is received. All other
connections have a weight of 1.0.

Figure 6 illustrates two architectures that optimally solve one-to-many
association problems with n = 3 inputs and m = 2 outputs. The NN ar-
chitecture in Figure 6a uses the approach followed when designing the NN
of Figure 5. More specifically, a single linear neuron is used to encode the
2m actions. This is done by allowing it to take 2m different values, which
is achieved by having 2m different connections from each input. The actual
weight values of the standard connections that feed to the switch neurons
do not matter as long as they are distinct and there is a mapping from each
weight to each action. In Figure 6a, this is achieved by bounding the linear
unit in the range [-1,1] and splitting it to the 2m = 22 = 4 weight values
to encode the 4 actions, i.e., +1 for Action 1, +0.5 for Action 2, −0.5 for
Action 3 and −1 for Action 4.

Input 1

Input 2

Input 3

*

*

*

r

Σ

+1.0
+0.5

-0.5
-1.0

+1.0
+0.5

-0.5
-1.0

+1.0
+0.5

-0.5
-1.0

(a) Architecture with one output neuron.

Input 1

Input 2

Input 3

*

*

*

Σ

r

Σ

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

(b) Architecture with m output neurons.

Figure 6: Architectures that solve one-to-many association problems with n = 3 and m =
2. The architecture in (a) uses one linear output neuron that encodes the 2m = 4 actions
by mapping them to 2m distinct values; these are determined by the connection weights
that feed on to the switch neurons, which are +1, +0.5, -0.5 and -1. The architecture in
(b) uses m binary output neurons that encode the actions as a bit pattern. All standard
connections apart from the ones that feed to the switch neurons have a weight of 1.0. All
modulatory connections have a weight of 1/2m = 0.25 in (a) and 1/2 = 0.5 in (b).

In contrast, Figure 6b depicts an architecture where m binary output
units are used, instead of just one. The 2m actions are encoded in the bit
pattern of the output units. For example, the bit pattern “01” means that

19

the first neuron has an output of 0 and the second neuron has an output of
1. In this architecture, the switch neurons need to be able to work together,
so as to optimally explore all possible bit patterns. For each input, there
are m switch neurons that connect to their corresponding output neuron.
Each switch neuron can take the value of +1 or −1. This means that the
output neurons can either take the value of +1 or 0 respectively, as they
use the Heaviside activation function. Remember from Section 2.5 that the
bottom switch neuron for each input is actually implemented as a module of
neurons, since it is the only one that emits a modulatory signal. This means
that its integrating neuron will fire, and consequently the upper neuron will
be modulated, only when all two states of the bottom neuron are explored
(by the -1 modulatory signal). The firing will cause the integrating neuron
to reset, and will also force the upper switch neuron to modify its state.
This procedure will be repeated until a zero modulatory signal is received. A
simple analysis of both architectures (not shown) reveals that it is preferable
to use Architecture 2 (Figure 6b) when m ≥ 5 as it uses significantly fewer
connections than Architecture 1.

So far, we have shown how to solve one-to-one and one-to-many problems,
therefore, we know how to handle the output or output-pattern based on
single inputs. It is possible to handle input-patterns by transforming them
to features, since an input in the previous architectures can be viewed as
a feature. Thus, the only change in the architectures is the transformation
of raw inputs to features. As the structure of the experiment is such that
every some number of steps the association sets change randomly, this means
that the network needs to be capable of learning every possible association
set that involves n binary inputs and m binary outputs. Table 1 shows the
number of possible association sets for every type of association problem.

Consider a simple case of a many-to-many association problem where n =
2 and m = 1. Examples of such problems are functions such as OR, AND, as
well as the famous XOR problem that was used to signify the importance of
hidden units and the use of the backpropagation algorithm (Rumelhart et al.,
1986b). The number of possible association sets is (21)2

2
= 24 = 16. This

means that the requirement enforced on the NN architecture is to be able to
learn a randomly selected problem out of these 16 in at most 2n×(2m−1) = 4
steps. In supervised learning settings, this would be equivalent to using just
one “epoch” to learn the problem. This is a very strict constraint and to
the best of our knowledge, the only way an architecture could achieve such
a performance is by using a separate feature for every permutation of the

20

binary inputs. That is, for n binary inputs, the number of features should
be 2n.

Following the work of Rvachev (2013), we model these permutation-
detecting feature neurons as follows. Assuming that all inputs are binary,
i.e., either 1 (active) or 0 (inactive), and the weights of the connections from
inputs to features are either +1 (excitatory) or -1 (inhibitory), a feature
neuron that detects a certain permutation computes its activation using the
following integration function:

a
(std)
i (t) = ni − n∗i − ni (12)

where n∗i =
∑

wji>0wji ≥ 0 is the number of excitatory (standard) connec-

tions, ni =
∑

wji>0wjiyj ≥ 0 is the number of active excitatory (standard)

connections, n∗i ≥ ni ≥ 0, ni =
∑

wji<0wjiyj ≤ 0 is the number of active

inhibitory (standard) connections. The output of the feature neuron is cal-
culated by feeding its activation through the Heaviside step function:

y
(std)
i (t) = H(a

(std)
i (t)) =

{
1 if a

(std)
i (t) ≥ 0

0 otherwise
(13)

Which permutation of the inputs is detected is dependent on the weights of
the incoming connections. More specifically, a weight of +1 from an Inputi
results in the detection of a permutation of the input vector where “1” is
present at the ith position. Similarly, a weight of -1 from an Inputj results
in the detection of a permutation where “0” is present at the jth position.
An example where the number of inputs n = 2 is shown in Figure 7. In this
example, a feature neuron whose connections both have a weight of -1, fires
when both inputs are 0; in other words, it detects the permutation “00”.
If the connection from Input1 has a weight of -1, but the connection from
Input2 has a weight of +1, the feature neuron fires when the input vector
is “01” (i.e., only Input2 is active). The pattern “10” is detected when the
weight of the connection from Input1 is +1, but from Input2 is -1, and the
pattern “11” is detected when the weights of both connections are +1.

The architectures presented in Figure 7 follow the same logic as the ar-
chitectures designed for one-to-many association problems (Figure 6). More
specifically, the single-output NN of Figure 7a encodes 2m actions through
2m connections on each switch neuron, whereas the NN with m output neu-
rons of Figure 7b encodes 2m actions in the output pattern. Many-to-one
association problems can be learned using the architecture of Figure 7a, with

21

Input 2

*

*

*

r

Σ

Input 1

*

00

01

10

11

+1

+1

+1

-1

-1

+1

-1

-1

(a) Architecture with one output neuron.

Input 2

*

*

*

r

Input 1

*

00

01

10

11

+1

+1

+1

-1

-1

+1

-1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

Σ

Σ

(b) Architecture with m output neurons.

Figure 7: Architectures that solve many-to-many association problems for n = 2 and
m = 2. Each of the 2n input patterns is detected by an individual feature neuron. In
order to solve many-to-one association problems, the architecture in (a) can be used, but
with m connections on each switch neuron, instead of 2m.

the difference being that each switch neuron will have m distinct connections
instead of 2m, each one corresponding to an individual action.

3.1.3. Results

Figure 8 illustrates a comparison between the four types of association
problems, for n = 6 inputs and m = 6 outputs. The results show that
whenever the association set changes, the corresponding network manages
to learn it in an optimal expected number of steps which is: n × (m −
1) = 30 for one-to-one association problems, n× (2m − 1) = 378 for one-to-
many association problems, 2n × (m− 1) = 320 for many-to-one association
problems, and 2n× (2m− 1) = 4032 for many-to-many association problems.

Upon examination of individual trials, we noticed that the networks could
learn the associations in fewer than the expected number of steps. This is
due to two reasons: (i) the network behavior is deterministic, and (ii) the
shuffling of association sets is performed in a random manner resulting in
some of them being easier to learn.

3.2. T-maze domains

In this section we investigate tasks in (discrete) T-maze domains that
require multiple steps per episode and delayed reward. The name of the
maze stems from the fact that it is shaped like the letter “T”: an agent is

22

Association Problems Comparison for n=m=6

-1

 0

 0 500 1000 1500 2000

One-to-One

R
e
w

a
rd

Episode

-1

 0

 0 500 1000 1500 2000

One-to-Many

R
e
w

a
rd

Episode

-1

 0

 0 500 1000 1500 2000

Many-to-One

R
e
w

a
rd

Episode

-1

 0

0 5k 10k 15k 20k

Many-to-Many

R
e
w

a
rd

Episode

Figure 8: Comparison results for different types of association problems with n=6 in-
puts and m=6 outputs. The expected number of time steps each NN needs to solve
the corresponding problem is: n × (m − 1) = 30 for one-to-one association problems,
n× (2m − 1) = 378 for one-to-many association problems, 2n × (m− 1) = 320 for many-
to-one association problems, and 2n × (2m − 1) = 4032 for many-to-many association
problems. These results are averages over 100 independent trials.

placed at the base of the maze and navigates in a corridor at the end of which
there is a turning point that splits the corridor into two branches, one going
to the left and the other to the right. Upon reaching a turning point, the
agent makes a decision and receives a reward depending on where it ends
up. The experiment is performed multiple times and the reward locations
can change throughout the experiment. Such environments are often used in
animal experiments to assess their memory and learning capabilities.

The basic T-maze can be extended by presenting more turning points
in sequence; this can be done by connecting multiple T-mazes. Generally,
an n-branched T-maze, i.e., a T-maze with n sequential turning points, has
a total of 2n possible maze-ends. Figure 9 shows an example of a double
T-maze environment. The tasks used in experiments with simulated agents

23

Turning

Point 1

A

Home

Maze End 2 Maze End 3

Maze End 4Maze End 1

R

r r

r

Turning

Point 2

Turning

Point 2
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

Figure 9: Double T-maze environment. The agent (A) starts at the Home position and
needs to navigate towards a Maze End, where a low reward (r) or a high reward (R) will
be given. On its way, it will come across two turning points, T1 and T2. There are four
possible Maze Ends, and depending on the action taken from each turning point, turning
left or right, the agent can explore all of them. The homing task additionally requires
from the agent to return to its home position after visiting a Maze End. For example, the
agent will end up at Maze End 3, if it takes a right turn at T1 and a left turn at T2, and
returns to the home position by taking a right turn at T2 and a left turn at T1.

can be roughly categorized based on (i) whether they use a discrete obser-
vation space (e.g., see Soltoggio et al., 2008) or a continuous one (e.g., see
Blynel and Floreano, 2003; Risi and Stanley, 2012), and (ii) whether a cue
is provided to the agent or not, before reaching some turning point. Exper-
iments with a cue provided to the agent (e.g., see Ulbricht, 1996; Jakobi,
1997; Husbands, 1998; Rylatt and Czarnecki, 2000; Bakker, 2002; Lin̊aker
and Jacobsson, 2001a,b; Bergfeldt and Lin̊aker, 2002; Ziemke and Thieme,
2002; Ziemke et al., 2004; Kim, 2004; Rempis, 2007; Littman, 2009; Duarte
et al., 2012; Ollion et al., 2012a,b; Lehman and Miikkulainen, 2014; Silva
et al., 2014; Duarte et al., 2014) are often used to assess the learning and
memory capabilities of an agent or method. Experiments with no cue pro-
vided to the agent prior to reaching a turning point (e.g., see Yamauchi and
Beer, 1994; Blynel, 2003; Blynel and Floreano, 2003; Gigliotta and Nolfi,
2008; Dürr et al., 2008; Soltoggio, 2008; Soltoggio et al., 2008; Soltoggio and
Jones, 2009; Risi et al., 2009, 2010; Risi and Stanley, 2010, 2012; Grouchy
and D’Eleuterio, 2014; Lehman and Miikkulainen, 2014; Howard et al., 2014)
are often used to additionally assess the agent’s exploration capabilities. In

24

such experiments, the reward locations usually change at some point during
the experiment and since the agent has no way of observing that change, the
task becomes nonstationary and the agent is required to explore the other
reward locations in order to maximize its reward.

3.2.1. Task description

The tasks used in this study are based on experiments performed by
Soltoggio et al. (2008) on the evolution of neuromodulated networks, where
no cue is provided to the agent. In the non-homing task, the agent starts at
the bottom of the maze (its home position, H) and is required to navigate to
a maze-end (ME), where a reward item is located. At a given time, one of
the maze-ends contains a high reward item, while the remaining MEs contain
low reward items. In the homing task, once the agent reaches a maze-end,
it automatically reverses its direction and has the additional requirement of
returning back to the home position. We use the standard RL terminology
of “episode” to denote a trip from the home position to a ME (and back, in
the homing scenario), and “trial” to denote a lifetime of the agent.

An important feature of the task is that the location of the high reward
is not kept fixed, but changes to a random location during the lifetime of the
agent making the problem nonstationary. Given an n-branched T-maze, an
optimal agent would need on average 2n episodes to explore all 2n possible
MEs to find the one that contains the high reward.

The agent’s observation consists of four variables each encoded by an
input neuron: (1) H is set to 1.0 when the agent is at the home position,
(2) T is set to 1.0 when the agent is at a turning point, (3) ME is set to
1.0 when the agent is at a maze-end, and (4) r is the amount of reward
collected at a maze-end. The agent is allowed to perform three actions, i.e.,
turn left, go forward or turn right, that are encoded by a single output neuron
which uses the weighted-sum integration function and the hyperbolic tangent
activation function. More specifically, the action “turn left” is selected if the
activation of the output neuron o ≤ −0.33, the action “go forward” is selected
if −0.33 < o ≤ 0.33, and “turn right” is selected if o > 0.33. We chose to
use this kind of architecture and not, for example, one where the action is
encoded by a softmax layer, in order to be consistent with previous work
(Soltoggio et al., 2008). No noise affects the inputs or neural transmission.

The reward function used is the same as in Soltoggio et al. (2008): the
value of the high reward is 1.0, whereas the low reward is 0.2. During navi-
gation the reward is set to 0. The agent is penalized for crashing on the walls

25

and this happens when it fails to maintain a forward direction in corridors,
or when it fails to turn to the appropriate direction at a turning point. The
penalty for crashing is 0.4 and this value is subtracted from the amount of
reward collected. When this happens the agent is repositioned at the home
location and a new episode commences. In the homing task, there is an addi-
tional penalty for failing to return to the home position. This happens when
the agent while navigating back to the home position, at a turning point it
enters a corridor that is not the one from which it came from. The penalty
for doing so is 0.3 and this also signifies a terminal state of the episode and
the agent is relocated to the home position. The corridors could stretch for
a variable number of agent steps; in our experiments, this number was set to
2 in all corridors. The turning point stretches for only one agent step.

It is worth noting that the environment is partially observable since the
agent does not know its exact location in the maze and the high reward
location. As it will be shown below, both the partial observability problem
and the problem of nonstationarity are solved with the NN architectures we
constructed. More specifically, the problem of partial observability is resolved
by carefully constructing a neural module that detects certain features in the
environment. The problem of nonstationarity is addressed by making the
agent explore the different maze-ends using the idea of modulated switch
neurons we present in this work.

3.2.2. NN architectures

Let us approach the single T-maze problem first. We exploit the observa-
tion that an optimal agent goes forward inside the corridors and only turns
when its T input is active. When its ME input becomes active, the high
reward does not elicit a change in behavior, whereas the low reward does.
A change in behavior only means, in this case, to turn left or right at the
turning point, depending on whether it turned right or left respectively at the
previous episode. A simple way to implement this behavior is by connecting
the T input with a switch neuron using two connections, one for each turning
action, and the switch neuron to the output neuron using a weight of 1. We
know that the output neuron uses the hyperbolic tangent function and that
“turn left” is selected if the output o ≤ −0.33 and “turn right” is selected
if o > 0.33. This means that by choosing appropriate weights, a negative
weight for “turn left” and a positive one for “turn right”, the actions can be
executed when the T input becomes active. If the T input is inactive, the
action “go forward” is executed since the output values of the switch neu-

26

ron and the output/action neuron remain 0. We choose these weights to be
high in magnitude to saturate the output neuron; any weights, however, that
satisfy the above inequalities would work. These are −5 for “turn left” and
+5 for “turn right”, and result in an output of ≈ −1 and ≈ +1 respectively.
What is now missing from the model is how to modulate the switch neuron.

bias

H

T

ME

r

*

Σ 1

1

1

-r
max

MOD

-1.25

Figure 10: Neural circuit for converting the reward signal to a modulatory one that is
compatible with switch neurons. This circuit implements the equationME(r−rmax) where
rmax = 1 is the high reward and the maximum obtained in the task. The multiplication
with the input ME is done since we want the modulation to be applied only when ME is
active, i.e., at the maze-end; thus, ME acts as a gate. The output is either 0.0, when the
high reward is obtained, or -0.8, when the low reward (=0.2) is obtained. Multiplying the
output of -0.8 with a weight value of -1.25 results in the value of +1. Therefore, when the
low reward is received the output of the circuit is +1 and when the high reward is received
the output of the circuit is 0.

Figure 10 shows a simple neural circuit that converts the reward signal
to one that is able to modulate the switch neurons. This circuit implements
the following function

y = ME(r − rmax) (14)

where r is the value of the reward input and rmax = 1 is the high reward
and the maximum obtained in this task. This equation essentially converts
all reward signals to a modulation of 0, apart from when the low reward is
obtained in which case the modulatory signal becomes equal to +1.

Figure 11a illustrates the simple architecture described above for solving
the single (non-homing) T-maze task. In order to create architectures for
the more complicated n-branched T-mazes it is required to address the issue
of perceptual aliasing that stems from the limited sensing capabilities of the
agent. Our approach is based on feature detector neurons. In particular, we
use a separate feature detector for each sequential turning point. Figure 11b
shows an alternative architecture that solves the single T-maze task using

27

bias

H

T

ME

r

Σ

MOD

+5

-5

(a) Single T-maze architecture without a
feature detector neuron.

bias

H

T

ME

r

Σ

MOD

+5

-5Σ

(b) Single T-maze architecture with a fea-
ture detector neuron.

bias

H

T

ME

r

Σ

MOD

Σ

Σ

+5

-5

+5

-5

(c) Double T-maze architecture.

bias

H

T

ME

r

Σ

MOD

Σ

Σ

+5

-5

+5

-5

Σ

+5

-5

(d) Triple T-maze architecture.

Figure 11: Architectures for the single, double and triple T-maze (non-homing) task. Solid
lines represent standard connections, dashed lines represent modulatory connections and
a thick solid line towards a neuron i represents a vector of delayed standard connections
[w1i(t−1), w2i(t−2), ..., wδi(t−δ)]T where δ = maximum corridor length + 1. The weights
of the connections of the modulatory circuit are shown in Figure 10. The weights of the
connections from the bias unit to the feature detectors are all -1.5. All other weights are
1.0. The figures show how straightforward it is to extend the neural architecture as the
number of sequential decision points increases.

a hidden neuron that fires when the agent comes from the home position
and reaches the turning point. The feature detector uses the weighted-sum
integration function and the Heaviside activation function. The figure shows
that there are incoming connections from three different inputs: the bias unit
that has a constant value of +1, the turning point input, and the home input.
The weight of the connection from the bias unit is -1.5. This inhibition is
used to suppress the activity of the neuron and by using a weight of +1 on
the remaining connections, the feature neuron fires only when a signal of
+1 comes from both H and T, since the activation becomes 0.5 > 0.0. In

28

order to achieve this, the connection from the H input needs to have a delay.
Since we use the same time scale for both the agent-environment interaction
and the network activation, the delay of the connection must be equal to
the corridor length + 1. We followed a more robust approach where the
connection from the H input is not a single delayed connection, but a vector
of delayed connections [w1i(t − 1), w2i(t − 2), ..., wδi(t − δ)]T where i is the
index of the neuron and δ = maximum corridor length + 1. This approach
implements what is known in the literature as a complete serial-compound
stimulus (Sutton and Barto, 1990; Montague et al., 1996; Schultz et al.,
1997; Gershman et al., 2013) and comprises a way of representing a stimulus
through time. Its advantage is that it can be used for mazes with a variable
corridor length; we only need to know the maximum corridor length1.

Figures 11c and 11d illustrate how the architectures can be extended to
solve the double and triple T-maze tasks respectively. For the double T-maze
task, a new feature detector neuron needs to be added that detects the new
(second) turning point in the sequence. This feature detector neuron needs to
fire when the agent comes from the previous (first) turning point and reaches
the new (second) one. This means that instead of being connected to the H
input with a vector of delayed connections, it needs to connect to the previous
(first) feature detector, as the latter fires when the previous (first) turning
point is encountered. The new feature neuron needs to connect to its own
switch neuron and the switch neuron to the output neuron. The trick now is
not to modulate both neurons in parallel (as in Figure 4a), but in sequence
(as in Figure 4b). This is because we want the agent to be able to explore
all maze-ends one after the other. For the triple T-maze and generally an n-
branched T-maze, the procedure above is repeated to create an architecture
that can optimally solve the corresponding problem.

For the homing task we make the following observation. The agent takes
a series of decisions when going towards a maze-end (the first part of the
task) and reverses them when going towards the home position (the second
part of the task). The architectures for the non-homing tasks are simple to
interpret, since we know the exact function of each neuron and the role each
plays on the synthesis of the behavior of the agent. Since the homing task has

1Note that the feature detection part could be done by using recurrent connections,
obviating the requirement of knowing the maximum corridor length. However, feature
detection is not the focus of this work and the approach described above suffices.

29

bias

H

T

ME

r

ΣMOD

Σ

Σ

+5

-5

+5

-5

Σ

Σ

+5

-5

+5

-5

Figure 12: An architecture for the double T-maze with homing task. When going towards
a maze-end, this architecture makes the agent turn right at T1 (by selecting the connection
with weight +5) and left at T2 (by selecting the connection with weight -5), thus, visiting
ME3. When homing, the agent turns right at T2 and left at T1.

a second part, which seems to be mirroring the first, this mirroring should
appear in an architecture that solves the homing task. That is, the NN
architecture should have some symmetry that reflects the symmetry of the
task. This turns out to be true, as shown in Figure 12, where a NN that solves
the double T-maze homing task is illustrated. The lower subnetwork of this
architecture encodes the behavior of the agent for the reverse direction (from
a maze-end to the home position). For this subnetwork, it is worth noting
that: (i) its upper feature detector neuron is connected to the ME input, as
the agent now starts from a maze-end, (ii) its modulatory connections are
delayed (shown with a thicker line), so that the change to the switch happens
after the agent leaves the corresponding turning point, and (iii) the states of
the switch neurons for the corresponding turning point are reversed, in order
to reverse the “turn” actions accordingly.

It is important to note that the states of all neurons apart from the switch
and integrating neurons are reset at the beginning of each episode. This is
done because we want to model an adaptive solution to the problem, and not
a solution that depends on memory (from recurrent/delayed connections)
between episodes. Thus, the delayed connections in our NNs are only used
during episodes (not between episodes). The switch neurons are not reset
because their role is similar to the role of a synaptic plasticity rule. What

30

we mean with this is that when a synaptic plasticity rule modifies a weight,
that weight is not reset to its initial value at the beginning of each episode.
Equivalently, when a switch neuron selects a different weight, it does not reset
its selection at the beginning of a new episode. The integrating neurons are
not reset, in order to be able to modulate switch neurons that come next on
the modulatory pathway and therefore, for exploration to work correctly.

3.2.3. Results for the double T-maze tasks

The behavior of the agent in the double T-maze environment is shown in
Figure 13. The same behavior can be observed for both the non-homing and
the homing tasks. The gray shaded area represents the location of the high
reward and the black dots indicate the maze-end explored by the agent at the
corresponding episode. The high reward location changes every 20 episodes
using the schedule (1, 2, 3, 4), meaning that it is at ME1 in episodes 1-20, at
ME2 in episodes 21-40, at ME3 in episodes 41-60, and at ME4 in episodes
61-80. This schedule was given on purpose, since it is the only one that makes
the agent explore all three suboptimal maze-ends every time the high reward
location changes, before finding the optimal one. That is because of the initial
states of the switch neurons and the way the architecture is designed, which
endow the agent with the following cyclic exploration pattern: (4, 3, 2, 1).
This means that the agent first explores ME4. If the high reward is not
located there, then during the next episodes, it will explore ME3, then ME2,
and ME1. If the high reward is not at ME1 either, the agent starts again at
ME4 and follows the above exploration procedure. This is shown in Figure 13,
where the agent settles at ME1 in episode 4 after exploring ME4, ME3 and
ME2 in this order. In episode 21 the agent visits ME1 again, since it has no
way of knowing that the high reward location has changed. It then resets its
exploration pattern by visiting ME4 in episode 22, then ME3 in episode 23,
and finally settles at ME2 from episode 24 until episode 41 at which point it
needs to explore again. Note that if the reward location changes randomly,
the agent could find it in less than four episodes. In any case, whenever the
agent finds the reward location, it continues to go there.

4. Discussion

In summary, a switch neuron can be seen as a regulatory gate that allows
information to pass through only from a single incoming connection. Mod-
ulatory signals change the modulatory activation of the switch neuron by a

31

 1
 2
 3
 4

 0 20 40 60 80

M
az

e
E

nd

Episode

High Reward Location Agent Location

Figure 13: Agent behavior in the double T-maze environment. The same behavior can be
observed for both the non-homing and the homing tasks. The gray shaded area represents
the location of the high reward and the black dots indicate the maze-end explored by the
agent at the corresponding episode. The high reward location changes every 20 episodes
using the schedule (1, 2, 3, 4). This schedule was given on purpose, since it is the only one
that makes the agent explore all three suboptimal maze-ends every time the high reward
location changes, before finding the optimal one.

certain amount. If this amount is enough, it forces the switch to change con-
nection. If we imagine the switch like a wheel, enough positive modulatory
activation will push the switch in a clockwise manner, thus, selecting the
next connection, while enough negative modulatory activation will pull the
switch in the opposite, counterclockwise direction, effectively selecting the
previous connection. Therefore, it is the resulting modulatory activity that
encodes the selected connection and not the modulatory signals themselves,
as the latter encode the change in the modulatory activity. This seems to be
useful in situations where a target behavior cannot be directly decided as a
function of the input, and some exploration is needed to discover it.

In addition, we showed that a separate pathway we call “modulatory
pathway” can be used to link circuits of switch neurons in a sequence of
gating events, with each circuit appropriately modulating the next. This
confirms a theoretical model of Gisiger and Boukadoum (2011), where they
hypothesized that such a pathway, formed by the gating mechanisms, could
convey other types of information and might be responsible for the produc-
tion of structured behavior. Interestingly, as the results in this work clearly
show, when this pathway is embedded in appropriate architectures, it has the
property of implementing optimal, deterministic exploration in binary asso-
ciation tasks and discrete T-maze problems. Therefore, the proposed switch
neuron computational model can be used to generate such optimal adapta-
tion behaviors and it would be interesting to see how it performs in other
tasks. The modulatory pathway is just an example of a modulatory topology
and worked well for the tasks presented in this work. More complex tasks

32

might require a different modulatory topology amenable to optimization.
The modulatory pathway implies that the switch neurons modulate each

other in a sequence, and this is implemented by replacing each switch neu-
ron with the switch module. It is reasonable to ask: is this ‘switch module’
needed? Certainly they are needed, as firstly it can easily be shown (not pre-
sented) that the architectures that use the switch modules are more efficient
than the ones that only use switch neurons in terms of number of connections
in one-to-many or many-to-many association tasks. Secondly, these modules
seem to be essential in sequential decision making tasks, as illustrated by the
architectures for the T-maze problems (see Figures 11 and 12).

Although the architectures were manually designed, they nevertheless
provide evidence that such an approach is effective. It is often hard to design
a good architecture that works well for varying sets of problems. There-
fore, it surely is beneficial to learn these architectures, instead of designing
them by hand. A question then is how can such architectures be learned
or automatically designed? A possible solution comes from evolutionary
computation. The field of neuroevolution (i.e., evolutionary NNs) has pro-
gressed in recent years, especially in the area of generative and developmen-
tal systems, where the genotype does not map directly to the phenotype but
goes through a process of development. For example, an algorithm called
Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT,
Stanley et al., 2009), can evolve types of networks called compositional pat-
tern producing networks (CPPNs, Stanley, 2007) that usually contain few
connections, but are capable of generating regular (Clune et al., 2011) and
modular NNs (Verbancsics and Stanley, 2011; Huizinga et al., 2014) with
many more connections. This is because CPPNs can encode connectivity
patterns that contain various types of regularities, such as symmetry, imper-
fect symmetry, repetition and repetition with variation. The architectures
we designed in this study display regularities that seem to be easily found
by algorithms such as HyperNEAT. Therefore, an interesting future work
would be to use such algorithms to evolve switch neuron architectures. As
the modulatory connectivity seems to be linked to optimal exploration be-
havior in the investigated tasks, it would be particularly interesting to see
what modulatory topologies emerge in other tasks and how adaptive the final
solutions are, compared to recurrent or plastic NNs without switch neurons.

Related to the above, it is worth noting that the proposed switch neuron
model does not come to replace existing mechanisms that are already success-
ful in T-maze tasks (such as the neuromodulation approach of Soltoggio et al.,

33

2008) and association problems (see Soltoggio and Stanley, 2012; Tonelli and
Mouret, 2013), but rather to complement them. Comparing the existing ap-
proaches with the switch neuron model could possibly reveal that the switch
neuron model provides higher evolvability, especially if the evolutionary al-
gorithm uses an indirect encoding (Yao, 1999) that promotes regular and/or
modular structures. This demands a thorough empirical investigation which
will establish the advantages and disadvantages of switch neurons and ex-
isting mechanisms. Note that care needs to be taken when attempting to
evolve adaptive behavior. This is because it is a problem that presents a
number of deceptive traps which could be mitigated by appropriately de-
signing the fitness function (Soltoggio and Jones, 2009) or changing the way
the evolutionary algorithm works by searching for novel behaviors (Lehman
and Stanley, 2008, 2011; Lehman and Miikkulainen, 2014; Risi et al., 2009,
2010) or encouraging behavioral diversity (Mouret and Doncieux, 2012).

An interesting research direction is the development of machine learning
methodologies or learning rules that optimize switch neuron networks based
on given datasets. For example, a gradient-descent-type of algorithm could
potentially be used to fit a switch neuron network on a dataset that contains
nonstationary sequential data, i.e., where the data records at certain points
are generated from different distributions. Such networks could provide bet-
ter generalization performance, as they could explore various neuronal combi-
nations online, even in a testing/recognition phase. This, however, requires
modulatory signals to be available. These signals could potentially be a
function of the inputs. For example, some feature modules with modulatory
output connections could change the state of switch neurons and route in-
formation flow differently. These signals could also be calculated by neural
circuits that take into account some: (i) input reconstruction error, calculated
using an “autoencoder” (Rumelhart et al., 1986a; Bourlard and Kamp, 1988)
/ “replicator” (Hecht-Nielsen, 1995) subnetwork; (ii) feature prediction error,
calculated using a “forward model” (Schmidhuber, 1991; Miall and Wolpert,
1996) or “general value function” (Sutton et al., 2011) subnetwork; (iii) RPE,
calculated using a “critic” (Sutton and Barto, 1998) subnetwork; (iv) error
calculated through gradient descent during the recognition phase, for finding
not the weights but the neural activations (Achler, 2014). The learning rules
could potentially be found using evolutionary algorithms, as in our previous
work (Vassiliades and Christodoulou, 2013).

Regarding the association tasks, if viewed from a supervised learning per-
spective, many-to-one tasks can be seen as multi-class classification problems,

34

while many-to-many tasks can be seen as multi-label classification problems.
In those settings, however, there is a target output and consequently an error,
both of which are vectors with dimension equal to the dimension of the out-
put vector. In the settings presented in this work, this error is not a vector,
but just a scalar signal, i.e., the modulatory signal. This is the reason why
these tasks are not solved in just a single time step and require multiple time
steps. Our architectures solve the problems using the optimal number of
steps, at the expense of an exponential (2n, where n is the number of inputs)
number of features. This is because the tasks presented in this work were not
designed to have any relationships between the inputs, as they are allowed
to change abruptly. For instance, consider a parity problem with n inputs.
It is possible to solve it with a learning algorithm and an architecture that
uses less than 2n features, at the expense of some time. The parity problem,
however, is just a single function, and constructing a network that is able to
solve all possible functions of n binary inputs in an optimal number of steps
requires an increase to the capacity of the network.

Related to the above, suppose that the inputs are real-valued instead of
binary, but still independent. This means that we could discretize them at
some target resolution, treat each discretization as a separate “input” and
devise a feature layer in which the neurons detect permutations of these
discretized inputs. This would still solve the problem in an optimal expected
number of steps. Real-world problems, however, do not change as abruptly
as the ones presented here, and there are relationships between the inputs,
so there is no need for such expanded feature layers. For this reason, the
inputs in our architectures should not be viewed as raw inputs, but rather
as features deep in the network. Thus, switch neuron architectures could
complement approaches that learn feature representations by stacking the
switch neurons or switch modules at the very last layers.

While this might seem promising, it is also worth considering the use of
switch neurons (and layers of switch neurons) between feature layers and not
just at the last layers during learning. This is because switch neurons can
be considered as specialized gating mechanisms, and this is not the first time
gating mechanisms have been used in NNs. In fact, examples can be found
in many works in the literature: higher-order NNs (Rumelhart et al., 1986a;
Giles and Maxwell, 1987; Giles et al., 1988; Durbin and Rumelhart, 1989; Shin
and Ghosh, 1991; Leerink et al., 1995) that use product units; long short-
term memory cells (Hochreiter and Schmidhuber, 1997; Gers et al., 2000)
that were created to address the vanishing or exploding gradient problem

35

when training recurrent NNs; committee machines with a dynamic structure,
such as mixture and hierarchical mixture of experts (Jacobs et al., 1991; Jor-
dan and Jacobs, 1994); binary stochastic units used in Boltzmann machines
(Ackley et al., 1985) that can implement conditional computation (Bengio
et al., 2013); an approach called dropout that samples an ensemble of NNs
from a single NN by stochastically gating (deactivating) hidden units during
training (Srivastava et al., 2014); and more recent works (Bengio, 2013; Cho
et al., 2014; Chung et al., 2014, 2015; Srivastava et al., 2015).

Moreover, we can see a relationship between gating and time scale, as
pathways can be selectively activated at specific time steps, while others at
steps that have a slower or faster clock rate (Koutńık et al., 2014). The
idea behind this approach is related to hierarchical learning and goes back to
Ashby (1952) who proposed a gating mechanism to handle repetitive situa-
tions. In Ashby’s work, it is assumed that an agent accumulates adaptations
in the form of new behaviors which can be switched depending on some “vari-
ables” that operate “at a much slower order of speed” (Ashby, 1952). This
is also related to multi-task learning since different environmental conditions
might require adaptations and the accumulation of new behaviors. This is
shown in an abstracted form in our experiments with the association tasks,
where the designed architectures were used to learn families of tasks and not
just a single task (e.g., learning not just the XOR function, but all functions
that involve 2 binary inputs and 1 binary output). Switch neurons naturally
encourage modularity and this is evident from all the architectures we pre-
sented. Neural modularity was found to encourage the learning of new skills
without forgetting old skills (Ellefsen et al., 2015), a property that is cru-
cial for hierarchical and multi-task learning. Therefore, switch neurons could
potentially be used in both hierarchical and multi-task learning situations.

It is worth mentioning an approach presented by Rvachev (2013) which
bears some similarities to our work. In that paper, it was proposed that
a neuron model could classify input permutations. This was achieved by
building upon a previous compartmental model of a hippocampal pyramidal
neuron (Poirazi et al., 2003). More specifically, Rvachev (2013) modeled
synaptic clusters that form on dendritic branches via projections from input
neurons. A cluster is excited if input neurons of a particular permutation
fire. If this local excitation is followed by the post-synaptic neuron firing,
a back-propagating action potential (bAP) at that site and, subsequently, a
positive RPE-type signal, then the expression of a “combinatorial memory”
component on the cluster is reinforced, otherwise, it is weakened if a negative

36

RPE-type signal is incurred. To make learning possible, a training phase is
performed, where a “guessing input” on the post-synaptic neuron is used to
make the neuron fire, while it is assumed that this firing always causes a bAP.
This approach has only been used to solve certain stationary many-to-one
association problems. In Section 3.1.2 we utilized a similar permutation-
detecting mechanism as part of the activation function of feature detector
neurons (rather than synaptic clusters). As in our model, the model by
Rvachev (2013) is much more efficient in training time, since only one “epoch”
is needed for classifying input patterns, but much less efficient in the number
of connections used compared to other methods.

Finally, we would like to discuss a potential relationship between switch
neuron architectures and synaptic plasticity rules. One-to-many association
tasks have been used in the work of Soltoggio and Stanley (2012) in which
a network architecture and a synaptic plasticity rule, called reconfigure-and-
saturate (R&S) Hebbian plasticity, were introduced. The R&S rule, which
relies on noise to explore weight configurations, was found to learn one-to-
many associations tasks with n = m = 6 in an optimal number of steps (see
Soltoggio and Stanley, 2012, Figure 14B), thus, comparable to our results (see
Figure 8). We experimented with the source code provided for that work2

and confirmed the results. However, we also found that for a larger number
of outputs (e.g., 10) the rule does not learn the associations in the optimal
number of steps as the switch neuron architectures do. This is because its ex-
ploration mechanism is stochastic, whereas the exploration mechanism of the
switch neuron architectures is deterministic. Although the R&S rule was not
designed with this guarantee in mind, its strength lies in its ability to work
under stochastic modulation policies. In contrast, the switch neuron archi-
tectures of this work rely on precise modulation signals in order to function
correctly, as it is assumed that noise is filtered before entering the modula-
tory subnetwork. Thus, we could say that switch neuron architectures, while
being artificial, they are nature-inspired in the sense that they try to model
the effect of a rule such as the R&S rule, and consequently the phenomenon
of behavioral plasticity, without modeling the dynamics of synaptic plastic-
ity. Since the behaviors are essentially hard-wired in the architectures we
presented, future work could explore whether the synergy between switch

2The source code was downloaded from: http://andrea.soltoggio.net/rec-sat [last ac-
cessed: 18 June 2015].

37

neurons and neural plasticity mechanisms (such as structural and synaptic
plasticity) could discover behaviors that are not initially encoded in the net-
work. In addition, an interesting future direction would be the design of
novel switch neuron architectures or the extension of the basic switch neuron
model in order to handle noisy signals.

5. Conclusion

This paper introduced a computational model of an artificial neuron,
called switch neuron, that endows an agent with the ability of switching be-
tween different behaviors in response to environmental changes. The model
works by selectively gating its incoming connections in a way that permits
the flow of information from only one of them. This connection is deter-
mined by the level of modulatory activation of the neuron which is affected
by modulatory signals. While these signals could encode some information
about the reward, they are qualitatively different in the sense that both
positive and negative signals are interpreted as ‘instructions’ to change the
selected connection, and the sign determines the direction of change. An
important design aspect of the switch neuron is that it can modulate other
switch neurons. This is done by using the switch neuron as part of a three-
neuron module with the others being: (i) a ‘modulating’ neuron, that col-
lects the incoming modulatory signals and modulates the switch neuron, and
(ii) an ‘integrating’ neuron, that integrates the modulatory signal emitted
to the switch neuron, fires above a threshold and is used to ‘communicate’
with other switch modules or individual switch neurons. We showed that
a topology where these switch modules are placed sequentially on the same
modulatory pathway explores in a principled manner all permutations of the
connections arriving on the switch neurons.

The model was tested in two sets of tasks, namely nonstationary associ-
ation tasks and T-maze domains. We presented appropriate switch neuron
architectures that can learn one-to-one, one-to-many, many-to-one and many-
to-many binary association tasks, and discussed how to extend them for an
arbitrary number of inputs and outputs. Architectures were presented for
the homing and non-homing T-maze tasks as well, where we discussed how
to extend them for an arbitrary number of sequential decision points. For
all tasks, the architectures were clearly shown to generate optimal adaptive
behaviors, thus, providing evidence that the switch neuron model could be a
valuable tool in simulations where behavioral plasticity is required.

38

Acknowledgments

We would like to thank Andrea Soltoggio for discussions on neural plas-
ticity and T-maze domains, and the three anonymous reviewers for their
constructive comments.

References

Achler, T., 2014. Symbolic neural networks for cognitive capacities. Biologi-
cally Inspired Cognitive Architectures, 9, 71–81.

Ackley, D. H., Hinton, G. E., Sejnowski, T. J., 1985. A learning algorithm
for Boltzmann machines. Cognitive Science, 9 (1), 147–169.

Anderson, C. H., Van Essen, D. C., 1987. Shifter circuits: a computational
strategy for dynamic aspects of visual processing. Proceedings of the Na-
tional Academy of Sciences, 84 (17), 6297–6301.

Arnold, S. F., 2011. Neuro-cognitive organization as a side-effect of the evo-
lution of learning ability. In: Proceedings of the 2011 IEEE Symposium on
Artificial Life (ALIFE 2011). IEEE, Piscataway, NJ, pp. 100–107.

Arnold, S. F., Suzuki, R., Arita, T., 2012. Second order learning and the evo-
lution of mental representation. In: Adami, C., Bryson, D. M., Ofria, C.,
Pennock, R. T. (Eds.), Artificial Life 13: Proceedings of the Thirteenth In-
ternational Conference on the Simulation and Synthesis of Living Systems.
MIT Press, Cambridge, MA, pp. 301–308.

Arnold, S. F., Suzuki, R., Arita, T., 2013. Evolution of social representation
in neural networks. In: Liò, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone,
M. (Eds.), Advances in Artificial Life, ECAL 2013: Proceedings of the
Twelfth European Conference on the Synthesis and Simulation of Living
Systems. MIT Press, Cambridge, MA, pp. 425–430.

Ashby, W. R., 1952. Design for a Brain: The Origin of Adaptive Behavior.
Chapman and Hall, London, UK.

Bakker, B., 2002. Reinforcement Learning with Long Short-Term Memory.
In: Dietterich, T. G., Becker, S., Ghahramani, Z. (Eds.), Advances in
Neural Information Processing Systems 14 (NIPS 2001). MIT Press, Cam-
bridge, MA, pp. 1475–1482.

39

Barbas, H., Zikopoulos, B., 2007. The prefrontal cortex and flexible behavior.
Neuroscientist, 13 (5), 532–545.

Barto, A., 1995. Adaptive critics and the basal ganglia. In: Hook, J. C.,
Davis, J. L., Beiser, D. G. (Eds.), Models of Information Processing in the
Basal Ganglia. MIT Press, Cambridge, MA, Ch. 11, pp. 215–232.

Bengio, Y., 2013. Deep learning of representations: Looking forward. In:
Dediu, A. H., Mart́ın-Vide, C., Mitkov, R., Truthe, B. (Eds.), Statistical
Language and Speech Processing. Vol. 7978 of Lecture Notes in Computer
Science. Springer, Berlin, pp. 1–37.

Bengio, Y., Léonard, N., Courville, A. C., 2013. Estimating or propagat-
ing gradients through stochastic neurons for conditional computation.
CoRR, abs/1308.3432. [online at http://arxiv.org/abs/1308.3432, accessed
12 June 2015]

Bergfeldt, N., Lin̊aker, F., 2002. Self-organized modulation of a neural robot
controller. In: Proceedings of the 2002 International Joint Conference on
Neural Networks (IJCNN 2002). IEEE, Piscataway, NJ, pp. 495–500.

Bi, G.-Q., Poo, M.-M., 1998. Synaptic modifications in cultured hippocampal
neurons: Dependence on spike timing, synaptic strength, and postsynaptic
cell type. Journal of Neuroscience, 18 (24), 10464–10472.

Binder, M. D., Hirokawa, N., Windhorst, U., 2009. Encyclopedia of Neuro-
science. Springer, Berlin.

Bliss, T. V., Lømo, T., 1973. Long-lasting potentiation of synaptic transmis-
sion in the dentate area of the anaesthetized rabbit following stimulation
of the perforant path. Journal of Physiology, 232 (2), 331–356.

Blynel, J., 2003. Evolving reinforcement learning-like abilities for robots. In:
Tyrrell, A. M., Haddow, P. C., Torresen, J. (Eds.), Evolvable Systems:
From Biology to Hardware. Vol. 2606 of Lecture Notes in Computer Sci-
ence. Springer, Berlin, pp. 320–331.

Blynel, J., Floreano, D., 2003. Exploring the T-maze: Evolving learning-
like robot behaviors using CTRNNs. In: Cagnoni, S., Johnson, C. G.,
Cardalda, J. J. R., Marchiori, E., Corne, D. W., Meyer, J.-A., Gottlieb, J.,
Middendorf, M., Guillot, A., Raidl, G. R., Hart, E. (Eds.), Applications of

40

Evolutionary Computing. Vol. 2611 of Lecture Notes in Computer Science.
Springer, Berlin, pp. 593–604.

Bourlard, H., Kamp, Y., 1988. Auto-association by multilayer perceptrons
and singular value decomposition. Biological Cybernetics, 59 (4-5), 291–
294.

Burchell, T. R., Faulkner, H. J., Whittington, M. A., 1998. Gamma frequency
oscillations gate temporally coded afferent inputs in the rat hippocampal
slice. Neuroscience Letters, 255 (3), 151–154.

Buxton, D., Bracci, E., Overton, P. G., Gurney, K., 2015. Substance P release
in the striatum allows for efficient switching between distinct actions in
action sequences. In: Proceedings of the Integrated Systems Neuroscience
Workshop. Manchester, UK, p. 33.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F.,
Schwenk, H., Bengio, Y., 2014. Learning phrase representations using
RNN encoder-decoder for statistical machine translation. In: Moschitti,
A., Pang, B., Daelemans, W. (Eds.), Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP 2014).
ACL, Stroudsburg, PA, pp. 1724–1734.

Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y., 2014. Empirical evalua-
tion of gated recurrent neural networks on sequence modeling. CoRR,
abs/1412.3555. [online at http://arxiv.org/abs/1412.3555, accessed 12
June 2015]

Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y., 2015. Gated feed-
back recurrent neural networks. CoRR, abs/1502.02367. [online at
http://arxiv.org/abs/1502.02367, accessed 12 June 2015]

Churchland, P. S., Sejnowski, T. J., 1992. The Computational Brain. MIT
press, Cambridge, MA.

Cisek, P., Puskas, G. A., El-Murr, S., 2009. Decisions in changing conditions:
the urgency-gating model. Journal of Neuroscience, 29 (37), 11560–11571.

Clune, J., Stanley, K. O., Pennock, R. T., Ofria, C., 2011. On the per-
formance of indirect encoding across the continuum of regularity. IEEE
Transactions on Evolutionary Computation, 15 (3), 346–367.

41

Coleman, O. J., Blair, A. D., Clune, J., 2014. Automated generation of envi-
ronments to test the general learning capabilities of ai agents. In: Proceed-
ings of the 2014 Conference on Genetic and Evolutionary Computation.
GECCO ’14. ACM, New York, NY, pp. 161–168.

Duarte, M., Oliveira, S., Christensen, A. L., 2012. Hierarchical evolution of
robotic controllers for complex tasks. In: Proceedings of the 2012 IEEE
International Conference on Development and Learning and Epigenetic
Robotics (ICDL 2012). IEEE, Piscataway, NJ, pp. 75–80.

Duarte, M., Oliveira, S. M., Christensen, A. L., 2014. Evolution of hybrid
robotic controllers for complex tasks. Journal of Intelligent & Robotic Sys-
tems, doi: 10.1007/s10846–014–0086–x.

Durbin, R., Rumelhart, D. E., 1989. Product units: A computationally pow-
erful and biologically plausible extension to backpropagation networks.
Neural Computation, 1 (1), 133–142.

Dürr, P., Mattiussi, C., Floreano, D., 2010. Genetic representation and evolv-
ability of modular neural controllers. IEEE Computational Intelligence
Magazine, 5 (3), 10–19.

Dürr, P., Mattiussi, C., Soltoggio, A., Floreano, D., 2008. Evolvability of neu-
romodulated learning for robots. In: Stoica, A., Tunstel, E., Huntsberger,
T., Arslan, T., Vijayakumar, S., El-Rayis, A. O. (Eds.), Proceedings of
the ECSIS Symposium on Learning and Adaptive Behaviors for Robotic
Systems (LAB-RS 2008). IEEE Computer Society Press, Los Alamitos,
CA, pp. 41–46.

Ellefsen, K. O., 2013. Evolved sensitive periods in learning. In: Liò, P.,
Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (Eds.), Advances in Ar-
tificial Life, ECAL 2013: Proceedings of the Twelfth European Conference
on the Synthesis and Simulation of Living Systems. MIT Press, Cambridge,
MA, pp. 409–416.

Ellefsen, K. O., Mouret, J.-B., Clune, J., 2015. Neural modularity helps or-
ganisms evolve to learn new skills without forgetting old skills. PLoS Com-
putational Biology, 11 (4), e1004128, doi: 10.1371/journal.pcbi.1004128.

42

Floresco, S. B., Grace, A. A., 2003. Gating of hippocampal-evoked activity in
prefrontal cortical neurons by inputs from the mediodorsal thalamus and
ventral tegmental area. Journal of Neuroscience, 23 (9), 3930–3943.

Gerfen, C., Wilson, C., 1996. The basal ganglia. In: Swanson, L. W.,
Björklund, A., Hökfelt, T. (Eds.), Integrated systems of the CNS, Part
III. Vol. 12 of Handbook of Chemical Neuroanatomy. Elsevier, Amster-
dam, The Netherlands, Ch. 2, pp. 371–468.

Gers, F. A., Schmidhuber, J., Cummins, F., 2000. Learning to forget: Con-
tinual prediction with LSTM. Neural Computation, 12 (10), 2451–2471.

Gershman, S. J., Moustafa, A. A., Ludvig, E. A., 2013. Time representa-
tion in reinforcement learning models of the basal ganglia. Frontiers in
Computational Neuroscience, 7 (194), doi: 10.3389/fncom.2013.00194.

Gigliotta, O., Nolfi, S., 2008. On the coupling between agent internal and
agent/environmental dynamics: Development of spatial representations in
evolving autonomous robots. Adaptive Behavior, 16 (2-3), 148–165.

Giles, C. L., Griffin, R. D., Maxwell, T., 1988. Encoding geometric invari-
ances in higher-order neural networks. In: Anderson, D. Z. (Ed.), Neu-
ral Information Processing Systems (NIPS 1987). American Institute of
Physics, New York, NY, pp. 301–309.

Giles, C. L., Maxwell, T., 1987. Learning, invariance, and generalization in
high-order neural networks. Applied Optics, 26 (23), 4972–4978.

Gisiger, T., Boukadoum, M., 2011. Mechanisms gating the flow of infor-
mation in the cortex: what they might look like and what their uses
may be. Frontiers in Computational Neuroscience, 5 (1), doi: 10.3389/fn-
com.2011.00001.

Gittins, J. C., 1979. Bandit processes and dynamic allocation indices. Journal
of the Royal Statistical Society. Series B (Methodological), 41 (2), 148–177.

Grace, A. A., 2000. Gating of information flow within the limbic system
and the pathophysiology of schizophrenia. Brain Research Reviews, 31 (2),
330–341.

43

Grouchy, P., D’Eleuterio, G., 2014. Evolving autonomous agent controllers
as analytical mathematical models. In: Sayama, H., Rieffel, J., Risi, S.,
Doursat, R., Lipson, H. (Eds.), Artificial Life 14: Proceedings of the Four-
teenth International Conference on the Synthesis and Simulation of Living
Systems. MIT Press, Cambridge, MA, pp. 681–688.

Gruber, A. J., Hussain, R. J., O’Donnell, P., 2009. The nucleus accumbens:
A switchboard for goal-directed behaviors. PloS ONE, 4 (4), e5062, doi:
10.1371/journal.pone.0005062.

Hecht-Nielsen, R., 1995. Replicator neural networks for universal optimal
source coding. Science, 269, 1860–1863.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural
Computation, 9 (8), 1735–1780.

Howard, G., Bull, L., de Lacy Costello, B., Gale, E., Adamatzky, A., 2014.
Evolving spiking networks with variable resistive memories. Evolutionary
Computation, 22 (1), 79–103.

Huizinga, J., Clune, J., Mouret, J.-B., 2014. Evolving neural networks that
are both modular and regular: HyperNEAT plus the connection cost tech-
nique. In: Proceedings of the 2014 Conference on Genetic and Evolutionary
Computation. GECCO ’14. ACM, New York, NY, pp. 697–704.

Husbands, P., 1998. Evolving robot behaviours with diffusing gas networks.
In: Husbands, P., Meyer, J. (Eds.), Proceedings of the First European
Workshop on Evolutionary Robotics (EvoRobot98). Vol. 1468 of Lecture
Notes in Computer Science. Springer, Berlin, pp. 71–86.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., Hinton, G. E., 1991. Adaptive
mixtures of local experts. Neural Computation, 3 (1), 79–87.

Jakobi, N., 1997. Evolutionary robotics and the radical envelope-of-noise
hypothesis. Adaptive Behavior, 6 (2), 325–368.

Jordan, M. I., Jacobs, R. A., 1994. Hierarchical mixtures of experts and the
EM algorithm. Neural Computation, 6 (2), 181–214.

Kandel, E., Tauc, L., 1965. Heterosynaptic facilitation in neurones of the ab-
dominal ganglion of Aplysia depilans. The Journal of Physiology, 181 (1),
1–27.

44

Katz, P. S., 1999. Beyond neurotransmission: Neuromodulation and its im-
portance for information processing. Oxford University Press, Oxford, UK.

Katz, P. S., 2003. Synaptic gating: the potential to open closed doors. Cur-
rent Biology, 13 (14), R554–R556.

Katz, P. S., Frost, W. N., 1996. Intrinsic neuromodulation: altering neuronal
circuits from within. Trends in Neurosciences, 19 (2), 54–61.

Kim, D., 2004. Evolving internal memory for T-maze tasks in noisy environ-
ments. Connection Science, 16 (3), 183–210.

Koutńık, J., Greff, K., Gomez, F. J., Schmidhuber, J., 2014. A clockwork
RNN. In: Xing, E. P., Jebara, T. (Eds.), Proceedings of the 31th Inter-
national Conference on Machine Learning (ICML 2014). Vol. 32 of JMLR
Workshop and Conference Proceedings. JMLR.org, pp. 1863–1871.

Lapicque, L., 1907. Recherches quantitatives sur l’excitation électrique des
nerfs traitée comme une polarisation. Journal de Physiologie et de Patholo-
gie Générale, 9 (1), 620–635.

Leerink, L. R., Giles, C. L., Horne, B. G., Jabri, M. A., 1995. Learning
with product units. In: Tesauro, G., Touretzky, D. S., Leen, T. K. (Eds.),
Advances in Neural Information Processing Systems 7 (NIPS 1994). MIT
Press, Cambridge, MA, pp. 537–544.

Lehman, J., Miikkulainen, R., 2014. Overcoming deception in evolution of
cognitive behaviors. In: Proceedings of the 2014 Conference on Genetic
and Evolutionary Computation. GECCO ’14. ACM, New York, NY, pp.
185–192.

Lehman, J., Stanley, K. O., 2008. Exploiting open-endedness to solve prob-
lems through the search for novelty. In: Bullock, S., Noble, J., Watson,
R. A., Bedau, M. A. (Eds.), Artificial Life XI: Proceedings of the Eleventh
International Conference on the Simulation and Synthesis of Living Sys-
tems. MIT Press, Cambridge, MA, pp. 329–336.

Lehman, J., Stanley, K. O., 2011. Abandoning objectives: Evolution through
the search for novelty alone. Evolutionary Computation, 19 (2), 189–223.

45

Lin̊aker, F., Jacobsson, H., 2001a. Learning Delayed Response Tasks Through
Unsupervised Event Extraction. International Journal of Computational
Intelligence and Applications, 1 (4), 413–426.

Lin̊aker, F., Jacobsson, H., 2001b. Mobile robot learning of delayed response
tasks through event extraction: A solution to the road sign problem and
beyond. In: Nebel, B. (Ed.), Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence (IJCAI 2001). Morgan Kauf-
mann, San Francisco, CA, pp. 777–782.

Littman, M. L., 2009. A tutorial on partially observable markov decision
processes. Journal of Mathematical Psychology, 53 (3), 119–125.

Marder, E., Thirumalai, V., 2002. Cellular, synaptic and network effects of
neuromodulation. Neural Networks, 15 (4), 479–493.

Markram, H., Lübke, J., Frotscher, M., Sakmann, B., 1997. Regulation of
synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science,
275 (5297), 213–215.

Martin, S., Grimwood, P., Morris, R., 2000. Synaptic plasticity and memory:
an evaluation of the hypothesis. Annual Review of Neuroscience, 23 (1),
649–711.

Miall, R. C., Wolpert, D. M., 1996. Forward models for physiological motor
control. Neural Networks, 9 (8), 1265–1279.

Montague, P. R., Dayan, P., Sejnowski, T. J., 1996. A framework for mesen-
cephalic dopamine systems based on predictive Hebbian learning. Journal
of Neuroscience, 16 (5), 1936–1947.

Mouret, J.-B., Doncieux, S., 2012. Encouraging behavioral diversity in evo-
lutionary robotics: An empirical study. Evolutionary Computation, 20 (1),
91–133.

Mouret, J.-B., Tonelli, P., 2014. Artificial evolution of plastic neural net-
works: a few key concepts. In: Kowaliw, T., Bredeche, N., Doursat, R.
(Eds.), Growing Adaptive Machines. Vol. 557 of Studies in Computational
Intelligence. Springer, Berlin, pp. 251–261.

46

Nogueira, B., Lenon, Y., Eduardo, C., Vidal, C. A., Cavalcante Neto, J. B.,
2013. Evolving plastic neuromodulated networks for behavior emergence of
autonomous virtual characters. In: Liò, P., Miglino, O., Nicosia, G., Nolfi,
S., Pavone, M. (Eds.), Advances in Artificial Life, ECAL 2013: Proceedings
of the Twelfth European Conference on the Synthesis and Simulation of
Living Systems. MIT Press, Cambridge, MA, pp. 577–584.

O’Donnell, P., Grace, A. A., 1995. Synaptic interactions among excitatory
afferents to nucleus accumbens neurons: hippocampal gating of prefrontal
cortical input. Journal of Neuroscience, 15 (5), 3622–3639.

Ollion, C., Pinville, T., Doncieux, S., 2012a. Emergence of memory in neu-
roevolution: Impact of selection pressures. In: Proceedings of the 14th
Annual Conference Companion on Genetic and Evolutionary Computa-
tion. GECCO ’12. ACM, New York, NY, pp. 369–372.

Ollion, C., Pinville, T., Stéphane, D., 2012b. With a little help from selec-
tion pressures: evolution of memory in robot controllers. In: Adami, C.,
Bryson, D. M., Ofria, C., Pennock, R. T. (Eds.), Artificial Life 13: Pro-
ceedings of the Thirteenth International Conference on the Simulation and
Synthesis of Living Systems. MIT Press, Cambridge, MA, pp. 407–414.

Olshausen, B. A., Anderson, C. H., Van Essen, D. C., 1993. A neurobiolog-
ical model of visual attention and invariant pattern recognition based on
dynamic routing of information. Journal of Neuroscience, 13 (11), 4700–
4719.

Poirazi, P., Brannon, T., Mel, B. W., 2003. Pyramidal neuron as two-layer
neural network. Neuron, 37 (6), 989–999.

Redgrave, P., Prescott, T. J., Gurney, K., 1999. The basal ganglia: a verte-
brate solution to the selection problem? Neuroscience, 89 (4), 1009–1023.

Rempis, C. W., 2007. Short-term memory structures in additive recurrent
neural networks. Master’s thesis, Bonn-Rhein-Sieg University of Applied
Sciences, Germany.

Risi, S., Hughes, C. E., Stanley, K. O., 2010. Evolving plastic neural networks
with novelty search. Adaptive Behavior, 18 (6), 470–491.

47

Risi, S., Stanley, K. O., 2010. Indirectly encoding neural plasticity as a pat-
tern of local rules. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J.,
Meyer, J.-A., Mouret, J.-B. (Eds.), From Animals to Animats 11: Proceed-
ings of the 11th International Conference on Simulation of Adaptive Be-
havior. Vol. 6226 of Lecture Notes in Computer Science. Springer, Berlin,
pp. 533–543.

Risi, S., Stanley, K. O., 2012. A unified approach to evolving plasticity and
neural geometry. In: Proceedings of the 2012 International Joint Con-
ference on Neural Networks (IJCNN 2012). IEEE, Piscataway, NJ, doi:
10.1109/IJCNN.2012.6252826.

Risi, S., Vanderbleek, S. D., Hughes, C. E., Stanley, K. O., 2009. How novelty
search escapes the deceptive trap of learning to learn. In: Proceedings of
the 11th Annual Conference on Genetic and Evolutionary Computation.
GECCO ’09. ACM, New York, NY, pp. 153–160.

Robbins, H., 1952. Some aspects of the sequential design of experiments.
Bulletin of the American Mathematics Society, 58, 527–535.

Rumelhart, D. E., Hinton, G. E., Williams, R. J., 1986a. Learning internal
representations by error propagation. In: Rumelhart, D. E., McClelland,
J. L., the PDP Research Group (Eds.), Parallel distributed processing:
Explorations in the microstructure of cognition. Volume 1. MIT Press,
Cambridge, MA, Ch. 8, pp. 318–362.

Rumelhart, D. E., Hinton, G. E., Williams, R. J., 1986b. Learning represen-
tations by back-propagating errors. Nature, 323, 533–536.

Russell, S., Norvig, P., 2003. Artificial Intelligence: A Modern Approach
(Second Edition). Prentice Hall, Upper Saddle River, NJ.

Rvachev, M. M., 2013. Neuron as a reward-modulated combinatorial switch
and a model of learning behavior. Neural Networks, 46, 62–74.

Rylatt, R., Czarnecki, C., 2000. Embedding connectionist autonomous agents
in time: The ‘road sign problem’. Neural Processing Letters, 12 (2), 145–
158.

Schmidhuber, J., 1991. A possibility for implementing curiosity and bore-
dom in model-building neural controllers. In: Meyer, J.-A., Wilson, S. W.

48

(Eds.), From Animals to Animats: Proceedings of the First International
Conference on Simulation of Adaptive Behavior. MIT Press/Bradford
Books, Cambridge, MA, pp. 222–227.

Schultz, W., 1998. Predictive reward signal of dopamine neurons. Journal of
Neurophysiology, 80 (1), 1–27.

Schultz, W., Dayan, P., Montague, P. R., 1997. A neural substrate of predic-
tion and reward. Science, 275 (5306), 1593–1599.

Sher, G. I., 2012. Handbook of Neuroevolution through Erlang. Springer,
New York, NY.

Shin, Y., Ghosh, J., 1991. The pi-sigma network: An efficient higher-order
neural network for pattern classification and function approximation. In:
Proceedings of the 1991 International Joint Conference on Neural Networks
(IJCNN 1991). IEEE, Piscataway, NJ, pp. 13–18.

Silva, F., Duarte, M., Oliveira, S. M., Correia, L., Christensen, A. L., 2014.
The case for engineering the evolution of robot controllers. In: Sayama,
H., Rieffel, J., Risi, S., Doursat, R., Lipson, H. (Eds.), Artificial Life 14:
Proceedings of the Fourteenth Conference on the Synthesis and Simulation
of Living Systems. MIT Press, Cambridge, MA, pp. 703–710.

Silva, F., Urbano, P., Christensen, A., 2012. Adaptation of robot behaviour
through online evolution and neuromodulated learning. In: Pavn, J.,
Duque-Mndez, N., Fuentes-Fernndez, R. (Eds.), Advances in Artificial In-
telligence - IBERAMIA 2012. Vol. 7637 of Lecture Notes in Computer
Science. Springer, Berlin, pp. 300–309.

Skinner, B. F., 1938. The behavior of organisms: An experimental analysis.
Appleton-Century, New York, NY.

Soltoggio, A., 2008. Neuromodulation increases decision speed in dynamic en-
vironments. In: Schlesinger, M., Berthouze, L., Balkenius, C. (Eds.), Pro-
ceedings of the Eighth International Conference on Epigenetic Robotics:
Modeling Cognitive Development in Robotic Systems. No. 139 in Lund
University Cognitive Studies. LUCS, Lund, Sweden, pp. 119–126.

49

Soltoggio, A., Bullinaria, J. A., Mattiussi, C., Dürr, P., Floreano, D., 2008.
Evolutionary advantages of neuromodulated plasticity in dynamic, reward-
based scenarios. In: Bullock, S., Noble, J., Watson, R. A., Bedau, M. A.
(Eds.), Artificial Life XI: Proceedings of the Eleventh International Con-
ference on the Simulation and Synthesis of Living Systems. MIT Press,
Cambridge, MA, pp. 569–576.

Soltoggio, A., Dürr, P., Mattiussi, C., Floreano, D., 2007. Evolving neuro-
modulatory topologies for reinforcement learning-like problems. In: Pro-
ceedings of the 2007 IEEE Congress on Evolutionary Computation (CEC
2007). IEEE, Piscataway, NJ, pp. 2471–2478.

Soltoggio, A., Jones, B., 2009. Novelty of behaviour as a basis for the neuro-
evolution of operant reward learning. In: Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation. GECCO ’09. ACM,
New York, NY, pp. 169–176.

Soltoggio, A., Stanley, K. O., 2012. From modulated Hebbian plasticity to
simple behavior learning through noise and weight saturation. Neural Net-
works, 34, 28–41.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.,
2014. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15 (1), 1929–1958.

Srivastava, R. K., Greff, K., Schmidhuber, J., 2015. Highway networks.
CoRR, abs/1505.00387. [online at http://arxiv.org/abs/1505.00387, ac-
cessed 20 August 2015]

Stanley, K. O., 2007. Compositional pattern producing networks: A novel ab-
straction of development. Genetic Programming and Evolvable Machines,
8 (2), 131–162.

Stanley, K. O., D’Ambrosio, D. B., Gauci, J., 2009. A hypercube-based en-
coding for evolving large-scale neural networks. Artificial Life, 15 (2), 185–
212.

Sutton, R. S., Barto, A. G., 1990. Time-derivative models of Pavlovian re-
inforcement. In: Gabriel, M. R., Moore, J. W. (Eds.), Learning and Com-
putational Neuroscience: Foundations of Adaptive Networks. MIT Press,
Cambdridge, MA, pp. 497–537.

50

Sutton, R. S., Barto, A. G., 1998. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A.,
Precup, D., 2011. Horde: A scalable real-time architecture for learning
knowledge from unsupervised sensorimotor interaction. In: Proceedings
of the 10th International Conference on Autonomous Agents and Mul-
tiagent Systems - Volume 2. AAMAS ’11. International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC, pp. 761–768.

Thorndike, E. L., 1911. Animal Intelligence. Macmillan, New York, NY.

Tonelli, P., Mouret, J.-B., 2011a. On the relationships between synaptic plas-
ticity and generative systems. In: Proceedings of the 13th Annual Confer-
ence on Genetic and Evolutionary Computation. GECCO ’11. ACM, New
York, NY, pp. 1531–1538.

Tonelli, P., Mouret, J.-B., 2011b. Using a map-based encoding to evolve plas-
tic neural networks. In: Proceedings of the 2011 IEEE Workshop on Evolv-
ing and Adaptive Intelligent Systems (EAIS 2011). IEEE, Piscataway, NJ,
pp. 9–16.

Tonelli, P., Mouret, J.-B., 2013. On the relationships between generative
encodings, regularity, and learning abilities when evolving plastic arti-
ficial neural networks. PLoS ONE, 8 (11), e79138, doi: 10.1371/jour-
nal.pone.0079138.

Triesch, J., 2007. Synergies between intrinsic and synaptic plasticity mecha-
nisms. Neural Computation, 19 (4), 885–909.

Tuckwell, H. C., 1988. Introduction to Theoretical Neurobiology: Volume
1, Linear Cable Theory and Dendritic Structure. Cambridge University
Press, Cambridge, UK.

Ulbricht, C., 1996. Handling time-warped sequences with neural networks. In:
Maes, P., Mataric, M. J., Meyer, J.-A., Pollack, J., Wilson, S. W. (Eds.),
From Animals to Animats 4: Proceedings of the Fourth International Con-
ference on Simulation of Adaptive Behavior. MIT Press, Cambridge, MA,
pp. 180–189.

51

Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J., Aston-Jones,
G., 1999. The role of locus coeruleus in the regulation of cognitive perfor-
mance. Science, 283 (5401), 549–554.

Vassiliades, V., Christodoulou, C., 2013. Toward nonlinear local reinforce-
ment learning rules through neuroevolution. Neural Computation, 25 (11),
3020–3043.

Verbancsics, P., Stanley, K. O., 2011. Constraining connectivity to encourage
modularity in HyperNEAT. In: Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation. GECCO ’11. ACM, New York,
NY, pp. 1483–1490.

Vogels, T. P., Abbott, L. F., 2005. Signal propagation and logic gating in
networks of integrate-and-fire neurons. Journal of Neuroscience, 25 (46),
10786–10795.

Williams, G. V., Goldman-Rakic, P. S., 1995. Modulation of memory fields by
dopamine D1 receptors in prefrontal cortex. Nature, 375 (6541), 572–575.

Yamauchi, B. M., Beer, R. D., 1994. Sequential behavior and learning in
evolved dynamical neural networks. Adaptive Behavior, 2 (3), 219–246.

Yao, X., 1999. Evolving artificial neural networks. Proceedings of the IEEE,
87 (9), 1423–1447.

Yoder, J., Yaeger, L., 2014. Evaluating topological models of neuromodula-
tion in polyworld. In: Sayama, H., Rieffel, J., Risi, S., Doursat, R., Lipson,
H. (Eds.), Artificial Life 14: Proceedings of the Fourteenth International
Conference on the Synthesis and Simulation of Living Systems. MIT Press,
Cambridge, MA, pp. 916–923.

Ziemke, T., Bergfeldt, N., Buason, G., Susi, T., Svensson, H., 2004. Evolving
cognitive scaffolding and environment adaptation: a new research direction
for evolutionary robotics. Connection Science, 16 (4), 339–350.

Ziemke, T., Thieme, M., 2002. Neuromodulation of reactive sensorimotor
mappings as a short-term memory mechanism in delayed response tasks.
Adaptive Behavior, 10 (3-4), 185–199.

52

