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Abstract—Filtering of protein secondary structure prediction aims to provide physicochemically realistic results, while it usually
improves the predictive performance. We performed a comparative study on this challenging problem, utilising both machine
learning techniques and empirical rules and we found that combinations of the two lead to the highest improvement.
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1 INTRODUCTION

KNOWLEDGE of the three-dimensional (3D) struc-
ture of a protein is crucial to understand its

function. However, the rapid growth of the number of
protein sequences has far outpaced the experimental
determination of their structures. Thus, there is a
growing need for a computational approach to the
problem of protein structure prediction. The predic-
tion of secondary structure, the local structure com-
monly defined by hydrogen bond patterns and local
geometry, is a critical first step towards this end and,
therefore, it has attracted a great amount of interest
over the past 50 years. With respect to their secondary
structure, amino acid residues in protein chains are
usually assigned into three main classes, namely helix,
extended and coil/loop.

Over the past 20 years, the secondary structure pre-
dictive accuracy has improved significantly through
the use of machine learning techniques [1] and evo-
lutionary information from multiple sequence align-
ments [2]. Several artificial neural network (ANN)
architectures have been used, such as feed-forward
ANNs [2], [3], bidirectional recurrent ANNs (BRNNs)
[4], [5], [6] and cascade-correlation ANNs [7], whilst
support vector machines (SVMs) have been proven
successful over the past decade [8], [9], [10]. Other
methods used hidden Markov models (HMMs) [11],
[12], multiple linear regression [13], [14] and non-
linear dynamic systems [15], whereas methods like
JPred [16] make consensus secondary structure pre-
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diction. More recently, knowledge-based methods,
such as PROTEUS [17] and HYPROSP [18], utilised
structural information, whilst the predictive accuracy
was further improved through the use of remote
homology information [19]. The three-state predictive
accuracy (Q3) is currently around 80%, whereas the
segment overlap (SOV) [20] is around 74, recently
reviewed in [21].

Several protein secondary structure prediction
(PSSP) methods used a multi-step process and the
final step includes filtering the predictions to improve
the quality of the results. This is accomplished by re-
moving conformations that are physicochemically un-
likely. For instance, helical conformations in proteins
are repetitive structures that consist of at least three,
four or five residues for 310-helix, α-helix and π-helix,
respectively. Since the different types of helices are
usually grouped in a single category by PSSP meth-
ods, a predicted helical structure would be expected
to have a minimum number of three residues in order
to fulfill geometric and hydrogen-bonding require-
ments. Hence, predictions of single helical residues
are physicochemically unrealistic, because one residue
cannot make a turn in order to form a helix. To tackle
this problem, both machine learning algorithms [22]
and empirical rules have been used in the past [2],
[7], [23]. Despite being employed widely, there is no
clear indication for the most effective filtering method
in PSSP and, to the best of our knowledge, no study
has been carried out to find the most suitable filtering
technique.

In this paper, we perform a comparative study
on the challenging problem of filtering PSSP, util-
ising both widely used empirical smoothing rules
and machine learning techniques. Using an ensem-
ble of six BRNNs with per-residue weight updat-
ing [24], we predict the secondary structure on two
non-redundant, non-homologous datasets and, sub-
sequently, we apply a number of filtering techniques
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to smooth the predictions. Importantly, the SOV in-
creases significantly in most cases. On the other hand,
some classifiers increase the per-residue accuracy,
whereas others decrease it. The Logistic function, the
Multi-layer Perceptron (MLP) and the SVMs were
found to be superior to the tested methods in terms of
both Q3 and SOV score. Notably, the results improve
even further when we use combinations of machine
learning algorithms and empirical filtering rules.

2 MATERIALS AND METHODS

2.1 Dataset and preprocessing
The study was carried out using two non-redundant,
non-homologous datasets. The first, denoted as CB513
throughout this paper, was compiled by Cuff and Bar-
ton [25] and contains 513 protein chains of known 3D
structure, which have less than 25% sequence identity
to ensure that homologous sequences are not included
in the training set. CB513 has been widely utilised
to compare several secondary structure prediction
methods in the literature, e.g. [9], [10]. Because of its
small size, this dataset was used to study the impact
of various input coding schemes. The second dataset
was PDB-Select25 (version October 2008) [26], a set of
4018 high quality X-ray and NMR structures with less
than 25% sequence similarity. From the initial set, we
removed chains for which DSSP [27] did not return
valid output, which resulted in a final set of 3977
protein chains. Even though most typical PSSP meth-
ods are optimised to work with globular proteins,
we decided not to remove around 90 transmembrane
proteins contained in this dataset.

Secondary structure was assigned based on the
experimentally determined 3D structures using the
established DSSP program [27], which assigns sec-
ondary structure in eight states: H (α-helix), G (310-
helix), E (extended β-strand), B (isolated β-bridge),
T (turn), S (bend) and “ ” (other/coil). Most of the
existing methods predict secondary structure using a
three-state assignment. Hence, we reduce the above
representation into a three-state scheme, by assigning
H, G, and I to the helix state (H), E and B to the
extended state (E) and the rest to the loop state (L).
This three-state representation is also followed by the
EVA secondary structure prediction validation server
[28].

Since their first use in PSIPRED [3], PSI-BLAST’s
[29] position specific scoring matrices (PSSMs) are
utilised by the majority of PSSP methods. PSSMs are
constructed using multiple sequence alignments and
provide crucial evolutionary information about the
protein structure. PSSMs consist of N × 20 elements,
where the N rows correspond to the length of the of
amino acid sequence and the columns correspond to
the 20 standard amino acids. We generated a PSSM
for each chain in the dataset using the BLOSUM62
substitution matrix [30] with an e-value of 0.001 and

Fig. 1. The architecture of the ensemble of BRNNs,
followed by the filtering of the output. The PSSM values
are given as input to six BRNNs, which predict the
secondary structure of each residue in the amino acid
sequence. Subsequently, the outputs are averaged
and are given as input to the filtering methods inves-
tigated in this study.

three iterations against the NCBI non-redundant (nr)
database, downloaded in February 2009. The database
was filtered by pfilt [31] to remove low complexity
regions, transmembrane spans and coiled coil regions.
This filtering could be important for dealing with
transmembrane proteins.

2.2 Ensemble of Bidirectional Recurrent Neural
Networks

ANNs were first employed for PSSP in [1]. Since
then, they have been widely applied in this domain
under different settings [2], [3]. In 1999, Baldi and
colleagues [4] implemented a BRNN architecture to
predict secondary structure, which was proven one of
the most successful approaches in the field. The pre-
dictive accuracy was boosted in a subsequent study
through the use of an ensemble of eleven BRNNs
[5]. The BRNN architecture consists of a feed forward
neural network (FFNN) and two recurrent neural net-
works (RNNs). More specifically, there is a Forward
RNN (FRNN) which processes the local information
contained at the left of the local window (upstream
information), whereas a Backward RNN (BWRNN)
takes into account the amino acids at the right-hand
side of the local window (downstream information).

In a recent study [24], we used the same BRNN
architecture of Baldi et al. [4], but we proposed a
modified training procedure. In brief, rather than
updating network weights after the presentation of
the entire protein chain (as performed by Baldi et al.
[4]), we update the weights at every residue. This
training procedure resulted in a significant increase



3

Fig. 2. Experiments with different local window sizes for filtering PSSP (see text for more information) using
four machine learning algorithms on the CB513 dataset. The predictive accuracy (left) and the SOV score (right)
strongly depend on the size of the local window used for filtering.

of the predictive accuracy when a single BRNN is
considered. In this paper, we employ an ensemble
of six BRNNs but, rather than using a single residue
in the central FFNN, we utilised a local window of
five residues, centred around the residue of interest.
Thus, the classifier incorporates the local information
contained in the neighbouring residues. Each BRNN
returns three real values for the central residue of
the local window, one for each secondary structure
state. Subsequently, the corresponding outputs for
each state are averaged and, therefore, the output
of the ensemble is an array of three values for each
residue. The resulting predictions are then used for
filtering, which is the main focus of this paper. The
overall architecture is illustrated in Figure 1.

2.3 Filtering techniques

We evaluate an array of machine learning algorithms
to identify those that perform better in filtering PSSP.
More specifically, we employed the WEKA software
package [32] to test the following classification algo-
rithms: Naive Bayes, Simple Cart, Radial Basis Func-
tion (RBF) network initialised by k-Means clustering
(k = 3), IBk (nearest neighbour algorithm) with k = 3,
MLP, Random Forest, J48 decision tree (C4.5) and
Logistic function. The latter is an implementation of a
multinomial logistic regression function with a ridge
estimator to avoid overfitting [33].

Additionally, we employed SVMs to filter the pre-
dictions. More specifically, we used the default one-
against-one multi-class SVM provided by the LibSVM
software package [34]. We utilised the RBF kernel

function and we set the kernel parameter, γ, at
1

3w
,

where w is the length of the local window. Finally,

the misclassification penalty parameter, C, was equal
to unity.

Moreover, we used a meta-classifier to combine two
or more from the above algorithms by using several
voting schemes. More specifically, we employed the
following voting schemes (implemented in WEKA):
(i) Majority Vote, (ii) Maximum probability, (iii) Mini-
mum probability, (iv) Product of probabilities and (v)
Average of probabilities. The combinations of filtering
methods are selected based on the performance of the
individual learning techniques and they are discussed
in Section 3. For the same purpose, we implemented
a HMM using the Viterbi algorithm [35]. A detailed
description of the above algorithms is beyond the
scope of this article, but a comprehensive survey for
many of them in the context of their potential in data
mining was written by Wu and co-workers [36]. All
algorithms from WEKA and LibSVM were used with
the default parameters. The results presented here can
be possibly improved by optimising each algorithm
individually.

The ultimate goal of a classification algorithm is not
to achieve high training accuracy, but to classify suc-
cessfully previously unseen examples. Hence, we use
n-fold cross-validation to estimate the generalisation
error. More specifically, we divide the training set into
n subsets and, sequentially, we use n− 1 for training
and the remaining one for testing. This procedure
is repeated n times, until all subsets are used once
for testing. In this paper, we report the results from
10-fold cross-validation on the CB513 dataset and 5-
fold cross-validation on the PDB-Select25 dataset. For
both datasets, the folds have similar representation
of helical, extended and loop residues. Moreover, in
the case of CB513, we ensure similar distributions of
small/large protein chains as well as of the four main
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TABLE 1
Filtering PSSP on the CB513 dataset using the method shown in the first column, sorted by the highest

predictive accuracy (Q3). w is the local window size for filtering that maximises the SEL score for each method.
In bold are the highest scores in the corresponding column.

Filtering w Q3 QH QE QL SOV SOVH SOVE SOVL CH CE CL SEL

method (%) (%) (%) (%)

LibSVM 19 77.04 78.02 65.81 82.40 72.54 71.92 68.64 70.80 0.718 0.635 0.583 74.79

Logistic 19 76.93 78.69 67.33 80.76 72.83 72.43 68.74 71.31 0.716 0.633 0.582 74.88

MLP 5 76.75 77.94 66.02 81.68 71.75 70.72 68.77 70.17 0.717 0.626 0.579 74.25

Simple Cart 5 76.65 79.06 66.78 80.11 70.60 70.91 67.57 69.66 0.712 0.625 0.580 73.63

SS-filt − 76.43 75.98 62.23 84.58 71.25 70.53 66.92 70.56 0.711 0.622 0.578 73.84

No filtering − 76.39 77.12 63.53 82.87 68.74 68.75 66.07 69.63 0.706 0.618 0.580 72.57

WH-filt − 76.24 74.77 62.33 85.06 69.43 67.31 65.90 70.35 0.710 0.616 0.577 72.84

RBF Network 1 76.23 81.52 69.88 75.44 69.30 71.73 68.84 66.86 0.705 0.618 0.578 72.77

Naive Bayes 3 76.10 78.68 71.99 76.27 71.75 71.37 70.46 68.57 0.710 0.629 0.561 73.92

Viterbi 1 75.98 77.77 63.93 81.14 69.59 69.58 65.57 67.53 0.705 0.619 0.562 72.79

J48 3 75.98 78.97 65.87 79.10 68.53 69.33 66.84 67.84 0.704 0.610 0.569 72.25

Random Forest 19 75.19 79.64 68.58 75.23 66.76 68.58 66.68 64.94 0.696 0.608 0.550 70.98

IBk (k=3) 13 72.03 78.67 62.64 71.81 62.66 67.98 62.71 60.86 0.640 0.566 0.499 67.34

SCOP classes (all-α, all-β, α + β and α/β) [37]. The
subsets are available on request.

Additionally, we filtered PSSP using two empirical
techniques that were previously used to filter other
PSSP methods. For this purpose, we implemented a
custom software, which uses regular expressions to
perform the empirical filtering step. The first set of
smoothing rules (denoted as SS-filt) was compiled by
Salamov and Solovyev [23] and contains the following
three filtering rules: (i) replace single helical residues
with loop, i.e. !H H !H → !H C !H; (ii) replace single
strand residues with loop, i.e. !E E !E → !E C !E; and
(iii) all strands of length two surrounded with helices
are replaced by helices, i.e. H E E H → H H H H.
The second set of filtering rules (denoted as WH-filt)
consists of ten empirical rules that have been used to
filter PSSP from DESTRUCT and can be found in [7].
The above rules are based on empirical knowledge
and aim to remove physicochemically unrealistic pre-
dictions.

Finally, combinations of machine learning algo-
rithms and empirical algorithms were also used. More
specifically, a machine learning algorithm was applied
at first and, subsequently, an empirical rule was used
to filter the outputs. This approach resulted in further
improvement of the machine learning algorithms as
discussed below.

2.4 Prediction accuracy assessment
To facilitate an objective comparison of the above
learning methods, several measures were used to

assess the performance of each filtering technique,
most of them defined in the EVA server [28]. Q3 is the
three-state overall percentage of correctly predicted
residues:

Q3 = 100
1

Nres

∑
i

Mii, (1)

where Nres is the total number of residues and Mij

is the number of residues observed in state i and
predicted in state j, with i and j ∈ {H,E,L} (i.e.
Mii is the number of residues predicted correctly in
state i). Moreover, we calculate the per-state accuracy,
as the percentage of correctly predicted residues in a
particular state:

Qi = 100
Mii

obsi
(2)

where obsi is the number of residues observed in state
i. Additionally, the Matthews correlation coefficient
[38], Ci, provides a measure for the performance at
each state:

Ci =
pini − uioi√

(pi + ui)(pi + oi)(ni + ui)(ni + oi)

with pi =Mii, ni =
∑
j 6=i

∑
k 6=i

Mjk,

oi =
∑
j 6=i

Mji and ui =
∑
j 6=i

Mij .

(3)
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TABLE 2
Filtering PSSP on the PDB-Select25 dataset using the method shown in the first column, sorted by the highest

predictive accuracy (Q3). In bold are the highest scores in the corresponding column.

Filtering Q3 QH QE QL SOV SOVH SOVE SOVL CH CE CL SEL

method (%) (%) (%) (%)

LibSVM 77.53 79.60 65.98 82.13 72.29 72.46 71.44 71.20 0.724 0.647 0.589 74.91

MLP 77.28 79.44 69.08 79.97 72.14 72.55 73.07 70.87 0.719 0.645 0.585 74.72

Logistic 77.04 78.21 70.20 79.81 71.82 71.13 73.76 70.99 0.713 0.643 0.584 74.43

Simple Cart 77.02 80.08 68.43 79.15 70.96 71.86 72.46 70.16 0.712 0.636 0.586 73.99

J48 76.59 79.89 67.63 78.74 69.13 70.72 71.44 69.05 0.705 0.628 0.581 72.86

RBF Network 76.43 80.34 68.90 77.29 68.63 70.85 71.51 68.55 0.705 0.619 0.581 72.53

SS-filt 76.19 73.49 73.79 79.76 70.80 67.40 76.28 70.88 0.703 0.628 0.579 73.49

No filtering 76.12 74.42 74.53 78.41 67.95 65.00 76.17 69.22 0.702 0.622 0.582 72.03

Random Forest 76.00 81.25 70.09 74.83 65.78 69.01 70.94 64.97 0.703 0.635 0.563 70.89

Naive Bayes 75.99 77.33 76.70 74.48 71.36 70.74 75.73 68.81 0.709 0.633 0.563 73.68

Viterbi 75.88 75.72 74.57 76.73 70.35 67.99 73.84 68.23 0.704 0.626 0.566 73.12

WH-filt 75.74 71.67 73.62 80.31 68.76 63.69 75.38 70.57 0.696 0.618 0.577 72.25

IBk (k=3) 73.45 80.03 66.10 71.97 61.80 67.66 68.38 60.76 0.652 0.601 0.522 67.63

In addition, we report the SOV score [20], a measure
that is based on the average overlap between the
observed and the predicted segments instead of the
average per-residue accuracy.

Finally, we define a selection criterion, denoted as
SEL, which takes equally into account the achieved
Q3 and SOV scores, the most established assessment
measures. Therefore, the SEL score is calculated as
follows:

SEL =
Q3 + SOV

2
(4)

2.5 Finding the best local window
A window of neighbouring residues is often used in
secondary structure prediction to capture additional
information about local interactions [39] and, hence,
we investigate the use of a local window, w, for
filtering, centred around the residue to be predicted.
More specifically, the ensemble of BRNNs has three
output values for each residue, one for each secondary
structure state. Therefore, a local window of size w
will result in an input vector of 3×w attributes for the
filtering classifier. Due to different design and capabil-
ities, the size of the local window that maximises the
predictive accuracy or the SOV is different for each
classifier employed in this study. Using the CB513
dataset, we tested different input coding schemes for
each method to find the best local window in each
case. Figure 2 shows how the predictive accuracy
and the SOV measure changes by varying the size of
the local window. The selected window size was the

one that maximised the SEL score (Equation 4) for
each machine learning technique tested, thus taking
into account both the Q3 and the SOV score. The
drop of accuracy in the case of MLP for w > 5 is
most probably due to overfitting. After optimising the
local window sizes for each method on the CB513
dataset, we utlilised them for filtering PSSP on the
PDB-Select25 dataset.

3 RESULTS AND DISCUSSION

Table 1 shows the performance of each filtering
method sorted by the highest accuracy, after finding
the local window size, w, that maximises the predic-
tive accuracy (Q3) on the CB513 dataset. The SVM
achieved the highest predictive accuracy of 77.04%,
an absolute improvement of 0.65% compared to the
unfiltered performance, while the SOV score increased
by 3.8, reaching the value of 72.54. However, it is the
Logistic function that achieved the highest SOV score
of 72.83, an increase of 4.09, whereas its predictive
accuracy of 76.93% is ranked second to the tested
methods. Notably, the Logistic function has higher
SEL score than the SVM, while it is also a faster
classifier for this problem. In addition, the MLP and
the Simple Cart also achieve improved accuracies
and SOV scores higher than 70. Despite that only
half of the machine learning algorithms increase their
accuracy after filtering, the majority of them increase
the SOV significantly.

Table 2 shows the performance of each technique on
the PDB-Select25 dataset, for which the window sizes
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TABLE 3
Filtering PSSP using combinations of machine learning algorithms and empirical rules. Firstly, a machine

learning algorithm is employed for filtering (shown in the first column) and, subsequently, the output is filtered by
empirical rules (SS-filt or WH-filt) to further improve PSSP. In bold are the highest Q3, SOV and SEL scores.

CB513 dataset PDB-Select25 dataset

SS-filt WH-filt SS-filt WH-filt

Classifier Q3 (%) SOV SEL Q3 (%) SOV SEL Q3 (%) SOV SEL Q3 (%) SOV SEL

LibSVM 77.02 72.94 74.98 76.85 72.21 74.53 77.50 72.66 75.08 77.33 71.98 74.65

Logistic 76.92 73.42 75.18 76.76 72.52 74.64 77.04 72.64 74.84 76.89 71.78 74.34

MLP 76.74 72.50 74.62 76.58 71.48 74.03 77.27 72.91 75.09 77.15 72.15 74.65

Simple Cart 76.67 72.64 74.65 76.51 71.14 73.82 77.06 72.70 74.88 76.89 71.53 74.21

RBF Network 76.54 72.52 74.53 76.39 70.61 73.50 76.66 71.54 74.10 76.44 69.91 73.17

J48 76.21 71.42 73.81 75.85 69.34 72.60 76.75 71.73 74.24 76.54 70.14 73.34

Naive Bayes 76.11 72.10 74.10 75.96 71.50 73.73 76.01 71.79 73.90 75.82 71.11 73.47

Viterbi 75.98 68.59 72.29 75.88 69.15 72.52 75.88 70.35 73.12 75.81 70.01 72.91

Random Forest 75.71 71.58 73.64 75.49 69.12 72.30 76.47 71.27 73.87 76.16 68.42 72.29

IBk (k=3) 73.33 68.73 71.03 73.01 65.45 69.23 74.55 68.30 71.42 74.14 65.14 69.64

were optimised in the CB513 dataset (see Table 1). It
is worth mentioning that the overall performance of
the unfiltered BRNN ensemble (“No Filtering” row) is
slightly lower for this larger dataset. This observation
is consistent when all three overall performance mea-
sures are considered, i.e. Q3, SOV and SEL. Nonethe-
less, the majority of the applied methods improve the
predictive performance and a higher increase is ob-
served compared to the results on the CB513 dataset.
The SVM is the most accurate filtering method based
on all three basic measures (Q3, SOV and SEL), show-
ing an improvement of around 1.4%, 4.4 and 2.9,
respectively, while the Logistic function and the MLP
are amongst the most accurate techniques. In fact,
the MLP performs particularly well on this dataset
and is ranked second to the tested methods based on
the achieved Q3, SOV and SEL. Apart from the MLP,
the RBF network and the J48 decision tree perform
better on the PDB-Select25 dataset than on the CB513
dataset.

3.1 Prediction accuracy per state

Notably, some machine learning techniques perform
particularly well in the prediction of individual states.
More specifically, the RBF network and the Random
Forest achieve the highest per-state accuracy for he-
lical residues on both datasets, even though their
overall Q3 score is lower than that of the best per-
forming methods. In fact, the RBF Network increases
the QH accuracy by 4.4% on the CB513 dataset, which
is more than 2.5% higher than the QH score of the
two best performing classifiers. On the PDB-Select25
dataset, the Random Forest achieves a remarkable

improvement of the QH score by 6.8%.

Similarly, the Naive Bayes classifier is very accurate
in the prediction of extended residues achieving QE

of 71.99% on the CB513 dataset, which is more than
4% higher than the QE achieved by the Logistic
function, whereas it is more that 6% higher than the
QE of the SVM. Importantly, its achieved QE score of
76.7% on the PDB-Select25 dataset is around 10.7%
higher than that of the SVM. In contrast, all three
algorithms perform relatively poor in the prediction
of loop residues, resulting in a low overall per-residue
accuracy.

Interestingly, the ensemble of BRNNs overpredicts
extended residues with the utilisation of the PDB-
Select25 dataset (see Table 2), but the application of
filtering techniques significantly affects the predic-
tive performance. Some classifiers, such as the Naive
Bayes and the Viterbi algorithm, perform well for the
prediction of extended residues, while others, such
as the LibSVM, decrease the QE score. The expla-
nation can be derived from the size of secondary
structure elements. While α-helices are usually long
repetitive structures with an average length of about
ten residues, most extended structures in proteins
are shorter than eight residues. Therefore, using a
long local window may improve the prediction of
longer structures (helix and coil), but it may also
decrease the predictive performance of short extended
structures. In fact, the QE scores shown in Table 2
are usually higher for classifiers that use short local
windows (from one to three residues) and lower for
classifiers that use long windows, such as 19 residues.
In addition, the dataset size seems to be important
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Fig. 3. Per state prediction after the application of
filtering techniques on the PDB-Select25 dataset. The
y-axis corresponds to the number of residues and the
x-axis to the combinations of observed and predicted
state. For instance, HE corresponds to residues that
are observed as helices (H) but are predicted as ex-
tended (E). The three columns at each state show
the number of residues for the unfiltered classifier
(ensemble of BRNNs), the LibSVM filtering and the
combination of LibSVM and SS-filt, respectively.

for the prediction of the extended class, which under-
represented in experimentally determined structures
and this is an additional reason it is more difficult
to predict. Thus, increasing the size of the dataset
can provide crucial additional information about the
extended state.

3.2 Combining machine learning and empirical
techniques

Interestingly, the empirical filtering does not increase
the Q3 score dramatically, but it improves the SOV.
The smoothing rules used in SS-filt are more effective
than those in WH-filt in terms of both Q3 and SOV.
The empirical rules have better performance than
some of the machine learning algorithms shown in
Tables 1 and 2, but they come short when they are
compared with the best performing techniques, such
as the SVM, the Logistic function and the MLP.

Nevertheless, a combination of machine learning
techniques and empirical rules can lead to a generally
improved filtering in secondary structure prediction.
As shown in Table 3, the quality of the prediction is
improved when we apply empirical rules after filter-
ing by a machine learning algorithm. The empirical
rules are manually created by scientists and, hence,
they provide physicochemically realistic information,
which sometimes cannot be captured by a learning
algorithm. On both datasets, the predictive accuracy
is not improved for the best performing classifiers,
but it is higher for algorithms that achieved lower
accuracies without the employment of the empirical
rules (compare with Tables 1 and 2), such as the

Fig. 4. Five examples that show the effect of filtering
on PSSP. The first line in each case shows the PDB
ID and the Chain ID. Sequences A and B are taken
from CB513 and the remaining sequences from PDB-
Select25. The mispredictions are shown in shadow.
“PriStr” is the amino acid sequence; “Real SS” is the
observed secondary structure; “No-Filt” is the PSSP
from the ensemble of BRNNs; “LibSVM is the PSSP
filtered with LibSVM and “SS-Filt” is the application of
the SS-Filt empirical rules on the output of LibSVM
filtering. Secondary structure states are reported using
the reduced three-state scheme (see Section 2.1).

RBF Network and the Random Forest. Most impor-
tantly, combinations of machine leaning techniques
and empirical rules give a major boost to the SOV
score leading to an improvement of 2% in most cases,
demonstrating the crucial information provided by
the empirical rules. On CB513, the Logistic function
achieves the highest SOV score of 73.42 when we
apply the SS-filt rules, while the SVM has the high-
est predictive accuracy. On PDB-Select25, the SVM
remains the most accurate method in terms of Q3,
whilst the MLP achieves the highest SOV (72.91). In
both datasets, the best performing methods have SOV
score greater than 72.5. As discussed above, the SS-filt
rules are more effective than the WH-filt rules and this
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TABLE 4
Filtering PSSP using combinations of machine learning algorithms with different voting schemes on the CB513
dataset. The last three columns show the results after using the SS-filt empirical rules. In bold are the highest

scores in the corresponding column.

Classifiers Voting w Machine learning only SS-filt

Q3 (%) SOV SEL Q3 (%) SOV SEL

Logistic + RBF + Random Forest Prod 3 76.71 71.74 74.23 76.74 72.76 74.75

Logistic + Simple Cart + RBF Prod 5 76.54 70.50 73.52 76.53 72.02 74.27

Logistic + Naive Bayes Prod 3 76.30 71.93 74.12 76.31 72.37 74.34

Logistic + Naive Bayes Avg 3 76.28 71.92 74.10 76.28 72.37 74.33

Logistic + Simple Cart + MLP Prod 9 77.11 72.25 74.68 77.08 73.43 75.26

Logistic + Simple Cart + MLP Min 5 76.93 72.17 74.54 76.92 73.11 75.01

Logistic + Simple Cart + MLP Max 11 76.95 72.16 74.55 76.93 73.22 75.07

Logistic + Simple Cart + MLP Avg 9 77.12 72.36 74.73 77.09 73.46 75.27

Logistic + Simple Cart + MLP Maj 11 76.90 71.75 74.33 76.89 72.62 74.76

is also observed in the results of Table 3.

Figure 3 illustrates how the number of correct pre-
dictions or mispredictions changes after filtering PSSP
with LibSVM and the subsequent application of the
SS-filt empirical rules on the PDB-Select25 dataset. As
stated above, the ensemble of BRNNs overpredicts
extended residues and this is reflected on the high per-
centage of correctly predicted extended residues, but
also on the large number of mispredicted helical and
loop residues as extended (HE and LE states). This
behaviour is smoothed after filtering with LibSVM,
which decreases the number of both correct predic-
tions and mispredictions to extended state, while im-
proving the performance of helix and loop prediction.
The application of the empirical rules does not have a
significant effect on the number of correctly predicted
residues, but, as discussed above, it improves the SOV
score. The analysis of mispredictions based on their
dihedral angles, φ and ψ, did not reveal any particular
trend since the mispredicted residues are distributed
all over the Ramachandran plot (data not shown).

Figure 4 shows five examples which demonstrate
the possible effect of filtering on the overall PSSP.
Importantly, the use of the SVM filtering improves
PSSP noticeably and in some cases, such as examples
D and E, leads in a significant improvement of the
predictive performance. Subsequently, the application
of the SS-Filt rules is a final refinement step, which
smoothes the LibSVM predictions using rules that
are well-defined a priori (Section 2.3), but its effect
is not always significant for the overall predictive
performance. Importantly, the filtering step (LibSVM
with SS-Filt) should be used as a post-processing step
which will refine the results of a PSSP method. The
success of any filtering technique strongly depends
on the success of the initial prediction method. Filter-

ing can be highly beneficial for state-of-the-art PSSP
methods because the output of the initial method
is fed as input to the filtering algorithm and, thus,
this information must be as accurate as possible. This
is certainly a challenging task which is outside the
scope of this article, where we consider our intitial
prediction method satisfactory given its results.

3.3 Combining machine learning techniques
Based on the results shown in Tables 1 and 2, we
tested various combinations of machine learning tech-
niques using different voting schemes implemented
in WEKA (see Section 2.3) and the results are shown
in Table 4 for the CB513 dataset. More specifically, a
number of machine learning algorithms are initially
used for filtering and their output is fed into a voting
function, which decides for the final prediction. The
voting schemes based on the average probabilities and
the product of probabilities achieve the highest accu-
racies. The predictions are then filtered by the SS-filt
empirical rules to further improve the predictive per-
formance. Given the extensive computational needs
of the SVM, we did not use it for the combinations
presented in Table 4. Instead, the Logistic function
was employed in combination with other machine
learning techniques. The voting based on the average
probability using the Logistic function, the Simple
Cart and the MLP slightly improved the Q3 and SOV
scores. However, the improvement is insignificant
compared to the performance of the Logistic func-
tion alone. Moreover, combining the Logistic function
with classifiers that performed particularly well in
the prediction of helical and extended residues, such
as the RBF Network and the Naive Bayes, did not
have positive impact on the overall performance.
Due to the computational requirements and given
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the insignificant improvement of predictive accuracy
on the CB513 dataset, we did not apply the above
combinations of machine learning techniques on the
PDB-Select25 dataset.

4 CONCLUSION

The aim of this work was to compare the perfor-
mance of a variety of filtering methods to the problem
of PSSP, which has not been studied systematically,
although it is utilised by a plethora of prediction
methods. We employed both machine learning algo-
rithms and empirical methods and, using two non-
redundant, non-homologous sets of 513 and 3977
protein chains, respectively, we showed that the SVM,
the Logistic function and the MLP are the most suit-
able learning techniques to tackle this problem. More
importantly, combinations of machine learning tech-
niques and empirical smoothing rules can improve the
quality of the predictions even further, particularly the
SOV score.

Based on the results presented in this article, we
suggest the utilisation of the Logistic function or the
MLP followed by the application of the SS-filt em-
pirical rules to filter PSSP. Despite achieving slightly
lower predictive accuracy than the SVM, these classi-
fiers are much faster compared to the SVM and can
lead to reliable filtering of the predictions.

Our findings are based on initial (sequence-to-
structure) secondary structure predictions obtained by
a BRNN with per-residue weight updating. Different
approaches at this starting step are expected to yield
different results, thus the impact of filtering meth-
ods on alternative initial data, or their combinations,
should be further investigated.

We are currently conducting a similar study to eval-
uate learning algorithms used for ANN ensembles,
instead of just averaging the outputs of a number
of ANNs. Finally, since filtering is a common step in
many protein structure prediction problems, such as
β-turn prediction [40], this comparative study can be
useful for other research fields in structural bioinfor-
matics.

ACKNOWLEDGMENTS

The authors would like to thank the Cyprus
Research Promotion Foundation for grant
TPE/ORIZO/0308(FR)/05.

REFERENCES

[1] N. Qian and T. J. Sejnowski, “Predicting the secondary struc-
ture of globular proteins using neural network models.” J Mol
Biol, vol. 202, no. 4, pp. 865–884, 1988.

[2] B. Rost and C. Sander, “Prediction of protein secondary struc-
ture at better than 70% accuracy.” J Mol Biol, vol. 232, no. 2,
pp. 584–599, 1993.

[3] D. T. Jones, “Protein secondary structure prediction based on
position-specific scoring matrices.” J Mol Biol, vol. 292, no. 2,
pp. 195–202, 1999.

[4] P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri,
“Exploiting the past and the future in protein secondary
structure prediction.” Bioinformatics, vol. 15, no. 11, pp. 937–
946, 1999.

[5] G. Pollastri, D. Przybylski, B. Rost, and P. Baldi, “Improving
the prediction of protein secondary structure in three and eight
classes using recurrent neural networks and profiles.” Proteins,
vol. 47, no. 2, pp. 228–235, 2002.

[6] G. Pollastri and A. McLysaght, “Porter: a new, accurate server
for protein secondary structure prediction.” Bioinformatics,
vol. 21, no. 8, pp. 1719–1720, 2005.

[7] M. J. Wood and J. D. Hirst, “Protein secondary structure
prediction with dihedral angles.” Proteins, vol. 59, no. 3, pp.
476–481, 2005.

[8] S. Hua and Z. Sun, “A novel method of protein secondary
structure prediction with high segment overlap measure: sup-
port vector machine approach.” J Mol Biol, vol. 308, no. 2, pp.
397–407, 2001.

[9] G. Karypis, “YASSPP: Better kernels and coding schemes lead
to improvements in protein secondary structure prediction.”
Proteins, vol. 64, no. 3, pp. 575–586, 2006.

[10] P. Kountouris and J. D. Hirst, “Prediction of backbone dihedral
angles and protein secondary structure using support vector
machines.” BMC Bioinformatics, vol. 10, no. 1, p. 437, 2009.

[11] K. Karplus, C. Barrett, M. Cline, M. Diekhans, L. Grate, and
R. Hughey, “Predicting protein structure using only sequence
information.” Proteins, vol. Suppl 3, pp. 121–125, 1999.

[12] K. Lin, V. A. Simossis, W. R. Taylor, and J. Heringa, “A simple
and fast secondary structure prediction method using hidden
neural networks.” Bioinformatics, vol. 21, no. 2, pp. 152–159,
2005.

[13] X. M. Pan, “Multiple linear regression for protein secondary
structure prediction.” Proteins, vol. 43, no. 3, pp. 256–259, 2001.

[14] S. Qin, Y. He, and X.-M. Pan, “Predicting protein secondary
structure and solvent accessibility with an improved multiple
linear regression method.” Proteins, vol. 61, no. 3, pp. 473–480,
2005.

[15] J. R. Green, M. J. Korenberg, and M. O. Aboul-Magd, “PCI-SS:
MISO dynamic nonlinear protein secondary structure predic-
tion.” BMC Bioinformatics, vol. 10, p. 222, 2009.

[16] J. A. Cuff, M. E. Clamp, A. S. Siddiqui, M. Finlay, and G. J.
Barton, “JPred: a consensus secondary structure prediction
server.” Bioinformatics, vol. 14, no. 10, pp. 892–893, 1998.

[17] S. Montgomerie, S. Sundararaj, W. J. Gallin, and D. S. Wishart,
“Improving the accuracy of protein secondary structure
prediction using structural alignment.” BMC Bioinformatics,
vol. 7, p. 301, 2006.

[18] K. P. Wu, H. N. Lin, J. M. Chang, T. Y. Sung, and W. L. Hsu,
“HYPROSP: a hybrid protein secondary structure prediction
algorithm–a knowledge-based approach.” Nucleic Acids Res,
vol. 32, no. 17, pp. 5059–5065, 2004.

[19] C. Mooney and G. Pollastri, “Beyond the twilight zone:
automated prediction of structural properties of proteins
by recursive neural networks and remote homology
information.” Proteins, vol. 77, no. 1, pp. 181–190, 2009.

[20] A. Zemla, C. Venclovas, K. Fidelis, and B. Rost, “A modi-
fied definition of sov, a segment-based measure for protein
secondary structure prediction assessment.” Proteins, vol. 34,
no. 2, pp. 220–223, 1999.

[21] H. Zhang, T. Zhang, K. Chen, K. D. Kedarisetti, M. J.
Mizianty, Q. Bao, W. Stach, and L. Kurgan, “Critical
assessment of high-throughput standalone methods for
secondary structure prediction.” Brief Bioinform, 2011. [Online].
Available: http://dx.doi.org/10.1093/bib/bbq088

[22] J. Chen and N. Chaudhari, “Cascaded bidirectional recurrent
neural networks for protein secondary structure prediction.”
IEEE/ACM Trans Comput Biol Bioinform, vol. 4, no. 4, pp.
572–582, 2007.

[23] A. A. Salamov and V. V. Solovyev, “Prediction of protein sec-
ondary structure by combining nearest-neighbor algorithms
and multiple sequence alignments.” J Mol Biol, vol. 247, no. 1,
pp. 11–15, 1995.

[24] M. Agathocleous, G. Christodoulou, V. Promponas,
C. Christodoulou, V. Vassiliades, and A. Antoniou,
“Protein secondary structure prediction with bidirectional
recurrent neural nets: Can weight updating for each residue
enhance performance?” in Artificial Intelligence Applications



10

and Innovations, ser. IFIP Advances in Information and
Communication Technology, H. Papadopoulos, A. Andreou,
and M. Bramer, Eds. Springer Boston, vol. 339, pp. 128–137,
2010.

[25] J. A. Cuff and G. J. Barton, “Evaluation and improvement of
multiple sequence methods for protein secondary structure
prediction.” Proteins, vol. 34, no. 4, pp. 508–519, 1999.

[26] U. Hobohm, M. Scharf, R. Schneider, and C. Sander, “Selection
of representative protein data sets.” Protein Sci, vol. 1, no. 3,
pp. 409–417, 1992.

[27] W. Kabsch and C. Sander, “Dictionary of protein secondary
structure: pattern recognition of hydrogen-bonded and geo-
metrical features.” Biopolymers, vol. 22, no. 12, pp. 2577–2637,
1983.

[28] B. Rost and V. A. Eyrich, “EVA: large-scale analysis of sec-
ondary structure prediction.” Proteins, vol. 5, pp. 192–199,
2001.

[29] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang,
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