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Multiagent Reinforcement Learning:
Spiking and Nonspiking Agents in the
Iterated Prisoner’s Dilemma

Vassilis Vassiliades, Aristodemos Cleanthous, and Chris Christodoulou

Abstract—This paper investigates multiagent reinforcement
learning (MARL) in a general-sum game where the payoffs’
structure is such that the agents are required to exploit each
other in a way that benefits all agents. The contradictory nature
of these games makes their study in multiagent systems quite
challenging. In particular, we investigate MARL with spiking
and nonspiking agents in the Iterated Prisoner’s Dilemma by
exploring the conditions required to enhance its cooperative
outcome. The spiking agents are neural networks with leaky
integrate-and-fire neurons trained with two different learning
algorithms: 1) reinforcement of stochastic synaptic transmission,
or 2) reward-modulated spike-timing-dependent plasticity with
eligibility trace. The nonspiking agents use a tabular represen-
tation and are trained with Q- and SARSA learning algorithms,
with a novel reward transformation process also being applied to
the Q-learning agents. According to the results, the cooperative
outcome is enhanced by: 1) transformed internal reinforcement
signals and a combination of a high learning rate and a low
discount factor with an appropriate exploration schedule in the
case of non-spiking agents, and 2) having longer eligibility trace
time constant in the case of spiking agents. Moreover, it is shown
that spiking and nonspiking agents have similar behavior and
therefore they can equally well be used in a multiagent interaction
setting. For training the spiking agents in the case where more
than one output neuron competes for reinforcement, a novel and
necessary modification that enhances competition is applied to
the two learning algorithms utilized, in order to avoid a possible
synaptic saturation. This is done by administering to the networks
additional global reinforcement signals for every spike of the
output neurons that were not “responsible” for the preceding
decision.

Index Terms— Multiagent reinforcement learning, Prisoner’s
Dilemma, reward transformation, spiking neural networks.

I. INTRODUCTION

ULTIAGENT reinforcement learning (MARL) has re-

cently attracted an influx of scientific work. Its problem
lies in the dynamic environment created by the presence of
more than one learning agent. Such an environment is affected
by the actions of all agents, thus, for a system to perform well,
the agents need to base their decisions on a history of joint
past actions and on how they wish to influence future ones.

Manuscript received January 19, 2010; revised July 12, 2010 and November
22, 2010; accepted January 16, 2011. Date of publication March 18, 2011;
date of current version April 6, 2011. This work was supported in part by the
Cyprus Research Promotion Foundation and the European Union Structural
Funds under Grant PENEK/ENISX/0308/82, and the University of Cyprus
under an Internal Research Project Grant.

The authors are with the Department of Computer Science, Univer-
sity of Cyprus, Nicosia 1678, Cyprus (e-mail: v.vassiliades@cs.ucy.ac.cy;
aris@cs.ucy.ac.cy; cchrist@cs.ucy.ac.cy).

Digital Object Identifier 10.1109/TNN.2011.2111384

In MARL, there could be different kinds of situations: fully
competitive or adversarial (which could be modeled with zero-
sum games); fully cooperative or coordinative (which could
be modeled with team games); and a mixture of both (which
could be modeled with general-sum games). Since different
issues arise in each situation, many algorithms were proposed
to address them.

Some of these algorithms are the following: 1) minimax-
Q [1], which replaces the maximum value function with a
function that calculates each player’s best response and can
be applied to two-player zero-sum games; 2) Nash-Q [2],
which is an extension of minimax-Q to general-sum games;
3) Joint Action Learners (JAL) [3], which is an approach
investigated in cooperative settings in which the agents main-
tain some beliefs about the strategies of the other agents and
therefore learn joint action values; 4) Friend-or-Foe Q (FoF-Q)
[4], which can be interpreted as consisting of two algorithms,
Friend-Q, which is suited for coordination games, and Foe-Q
for zero-sum games and is equivalent to minimax-Q; 5) Win
or Learn Fast-Policy Hill Climbing (WoLF-PHC) [5], which
uses an extension of Q-learning [6] to play mixed strategies
based on the WoLF principle that uses a higher learning rate
when the agent is losing and a lower one when it is winning;
6) WoLF-Infinitesimal Gradient Ascent (WoLF-IGA) [7], [8],
which combines gradient ascent with an infinitesimal step size
(IGA) [9] with the WoLF method; 7) Correlated Equilibria Q
(CE-Q) [10], which learns correlated equilibrium policies
and can be thought of as a generalization of Nash-Q and
FoF-Q; 8) Frequency Maximum Q (FMQ) [11], which is a
heuristic method proposed for coordination in heterogeneous
environments and is based on the frequency with which actions
yielded the maximum corresponding rewards in the past;
9) Generalized IGA-WoLF (GIGA-WoLF) [12], which
achieves convergence and no regret (i.e., the algorithm
performs as good as the best static strategy); 10) Adapt
When Everybody is Stationary Otherwise Move to Equi-
librium (AWESOME) [13], which is an algorithm that is
guaranteed to converge to a Nash equilibrium in self-
play and learns to play optimally against stationary op-
ponents in games with an arbitrary number of players
and actions; 11) Weighted Policy Learning (WPL) [14],
which assumes that an agent neither knows the underly-
ing game nor observes other agents, and achieves con-
vergence in benchmark two-player-two-action games; and
12) Max or MiniMax Q (M-Qubed) [15], which is a
robust algorithm that was shown to achieve high degrees of
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coordination and cooperation in several two-player repeated
general-sum games in homogeneous and heterogeneous set-
tings. For a comprehensive coverage of MARL algorithms,
see [16] and references therein.

Much work is focused in deriving theoretical guarantees,
based on different sorts of criteria such as rationality and con-
vergence [5], targeted optimality, safety and auto-compatibility
[17], or security, coordination, and cooperation against a wide
range of agents [15]. Theoretical work has also been done in
analyzing the dynamics of multiagent learning. For instance,
Tuyls et al. [18] investigated MARL from an evolutionary
dynamical perspective, while Iwata et al. [19] approached
the field from a statistical and an information-theoretical
perspective. Since the problem is not very well defined,
Shoham et al. [20] attempted to classify the existing work
by identifying five distinct research agendas. They argued that
when researchers design algorithms, they need to place their
work under one of these categories which are: 1) computa-
tional, which is aimed in designing learning algorithms that
iteratively compute properties of games; 2) descriptive, which
is to determine how natural agents (such as humans, animals,
or populations) learn in the context of other learners and
make decisions; 3) normative, in which the learning algorithms
give a means to determine which sets of learning rules are
in equilibrium with one another; 4) prescriptive cooperative,
which is how to design learning algorithms in order to achieve
distributed control; and 5) prescriptive noncooperative, which
is how to design effective algorithms, or how agents should
act to obtain high rewards, for a given environment, i.e., in
the presence of other (intelligent) agents. Subsequently, some
work did focus on specific agendas (e.g., [21]), but more
agendas were proposed [22]. In addition, the original agendas
[20] have been criticized as being not distinct, since they may
complement each other [23], [24]. Stone [25] extended the
criticism by arguing that the game-theoretic approach is not
appropriate in complex multiagent problems. Despite these
criticisms, our study lies in the original prescriptive noncoop-
erative agenda [20]. For training the nonspiking agents, we use
two simple algorithms from single-agent reinforcement learn-
ing (RL), namely Q-learning [6] and State-Action-Reward-
State-Action (SARSA) [26].

Reinforcement learning [27] has successfully been applied
to spiking neural networks (NNs) in recent years. These
schemes achieve learning by utilizing various biological prop-
erties of neurons, whether they are neurotransmitter release
[28], spike timing [29], or firing irregularity [30]. Their degree
of experimental justification varies and they need to be further
assessed, nevertheless, all these methods are biologically plau-
sible and constitute the basis of successful RL applications on
biologically realistic neural models. A popular implementation
of RL on spiking NNs is achieved by modulating spike-timing-
dependent synaptic plasticity (STDP) with a reward signal
[29], [31]-[33]. STDP is the change in synaptic efficacy that
occurs according to the relative timing of pre- and postsynap-
tic spikes and has been experimentally observed [34]-[36].
Other examples of RL on spiking NNs include Seung’s re-
inforcement of stochastic synaptic transmission [28] as well
as reinforcement of irregular spiking [30], where the learn-
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ing rules perform stochastic gradient ascent on the expected
reward by correlating the neurotransmitter release probability
and the fluctuations in irregular spiking, respectively, with a
reward signal. Other policy gradient methods, such as the
latter, that are applied to spiking NNs resulting in spike-
based formulation of reward-based learning include [37]- [39].
Moreover, in another study, a spiking NN implements an
actor-critic TD learning agent [40], while in [41] a spiking
NN architecture with local Hebbian spike-timing learning and
RL schemes is implemented by a field-programmable gate
array chip for cardiac resynchronization therapy. In addition,
in [42], classical conditioning [43] is combined with STDP
and applied to navigation control. Some of these algorithms
were shown to be able to solve simple tasks like the XOR
problem [28], [29]. In addition, reward-modulated STDP could
learn arbitrary spike patterns [31] or precise spike patterns [33]
as well as temporal pattern discrimination [33], and could be
used in simple credit assignment tasks [32]. For training the
spiking NNs in this paper, we use reinforcement of stochastic
synaptic transmission [28] as well as reward-modulated STDP
with eligibility trace [29]. To the best of our knowledge, we
are the first group employing spiking NNs with biologically
plausible learning schemes in a challenging multiagent game-
theoretical situation.

It has to be pointed out that the NN agents in our multiagent
system are represented by entire NNs and not by single
neurons as in the multiagent modeling in [44], where the NN is
interpreted as a model of interaction between a large number of
decision makers (neurons representing the real market agents’
buying/selling decisions) and serves as a model of the market
process.

This paper investigates cooperation between self-seeking
reward agents in a noncooperative setting. This situation can be
modeled with the Iterated Prisoner’s Dilemma (IPD) which is a
general-sum game. Although the cooperative (CC) outcome is
a valid equilibrium of the IPD, our study does not aim to assess
the strength of the learning algorithms to attain equilibria of
the game or best responses to any given strategy. Instead, we
focus on mutual cooperation and investigate whether it can be
achieved by spiking and simple nonspiking agents trained with
RL and attempt to compare them. It is very interesting and
beneficial to understand how and when cooperation is achieved
in the IPD’s competitive and contradictive environment, as it
would then become possible to prescribe optimality in real-life
interactions through cooperation, analogous to the IPD. In its
standard one-shot version, the Prisoner’s Dilemma (PD) [45]
is a game summarized by the payoff matrix of Table I. There
are two players, Row and Column. Each player has the choice
of either to “Cooperate” (C) or “Defect” (D). For each pair
of choices, the payoffs are displayed in the respective cell of
the payoff matrix of Table I. In game-theoretical terms, where
rational players are assumed, DD is the only Nash equilibrium
outcome [46] (i.e., a state in which no player can benefit by
changing his/her strategy while the other players keep theirs
unchanged), whereas the cooperative (CC) outcome satisfies
Pareto optimality [47] (i.e., a state in which it is impossible
to increase the gains of one player without increasing the
losses of other players). The “dilemma” faced by the players
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TABLE I
PAYOFF MATRIX OF THE PRISONER’S DILEMMA GAME WITH THE VALUES
USED IN OUR EXPERIMENTS. PAYOFF FOR THE ROW PLAYER IS SHOWN
FIRST. R IS THE “REWARD” FOR MUTUAL COOPERATION. P IS THE
“PUNISHMENT” FOR MUTUAL DEFECTION. T IS THE “TEMPTATION” FOR
UNILATERAL DEFECTION AND S IS THE “SUCKER’S” PAYOFF FOR
UNILATERAL COOPERATION. THE ONLY CONDITION IMPOSED TO THE
PAYOFFS IS THAT THEY SHOULD BE ORDERED SUCH THAT T>R>P>S

Cooperate (C) Defect (D)
Cooperate (C) R(=4), R(=4) S(=-3), T(=5)
Defect (D) | T(=5), S(=-3) | P(=-2),P(=2)

in any valid payoff structure is that, whatever the other does,
each one of them is better off by defecting than cooperating.
The outcome obtained when both players defect, however, is
worse for each one of them than the outcome they would
have obtained if both had cooperated. In the IPD, an extra
rule (2R>T+-S) guarantees that the players are not collectively
better off by having each player alternate between C and
D, thus keeping the CC outcome Pareto-optimal. Moreover,
contrary to the one shot game, CC can be a Nash equilibrium
in the infinite version of the IPD.

As pointed out in [48], “perfectly predicting the environ-
ment is not enough to guarantee good performance,” be-
cause the performance depends partly on properties of the
environment. In our case, we believe that the property of
the environment which plays a significant role in the CC
outcome is the reward function (i.e., the payoff matrix), since
it specifies the type and strength of the reinforcement the
agents receive. Agents that rely only on predesigned reward
functions in order to be trained might not truly be called
adaptive and autonomous, because they can only cope with
environment types to which these functions apply. Snel and
Hayes [49] investigated the evolution of valence systems (i.e.,
systems that evaluate positive and negative nature of events)
in an environment largely based on the artificial life world by
Ackley and Littman [50]. They compared the performance of
motivational systems that are based on internal drive levels
versus systems that are based purely on external sensory input
and showed that the performance of the former is significantly
better than that of the latter.

Moreover, an elaborated view of the agent—environment
interaction [51], [52] splits the environment into the external
environment and an internal one, the latter being considered
to be part of the agent. The external environment provides
the sensations to the agent and receives its actions, while
the internal environment provides the states and rewards to
the agent, since it contains the critic and receives the agent’s
decisions. Some other line of work shows that by discrimi-
nating external rewards from “utilities” (i.e., internal stimuli
elicited by rewards) and using utilities for learning in the IPD,
cooperation can be facilitated [53].

Inspired by an extension of the WoLF-PHC algorithm that
manipulates its own payoffs showing that it is possible to
transform the game so that higher payoffs can be accumulated
[54], we made a preliminary experimentation showing that
for the nonspiking agents it is beneficial to mix positive and
negative values [55], instead of using the most commonly

studied payoff values (see [56], and all chapters in the edited
book by Kendall et al. [57]). The payoff values used in both
spiking and nonspiking simulations are shown in Table I.

Based on the above, in a separate investigation [58], we
adopted the idea of splitting the rewards coming from an
external environment from the utilities [51], [53] that are
a transformation of the rewards generated by the internal
environment of the agent. More specifically, we investigated
(in [58]) how the internal environment could transform the
external values coming from the payoff matrix to more ap-
propriate rewards and punishments that motivate the agents to
cooperate. In addition, in the same work [58] we describe how
an evolutionary algorithm could be used to find these internal
reward values that still satisfy the constraints of the IPD, so
that simple Q-learners can rapidly reach the CC outcome in
self-play. In this paper (see Sec. II.A), we apply a reward
transformation process to the nonspiking Q-learning agents,
so we use these internal reward values we found in [58]).
Moreover, a transformation of the external payoff values to
internal ones has been employed by our spiking agents as well
(see Section II-B).

The remainder of this paper is organized as follows.
Section II describes our methodology for both spiking and
nonspiking simulations. The results are presented and analyzed
in Section III, while the conclusions are given in the last
section. A very preliminary version of this paper has been
presented in a conference [55].

II. METHODOLOGY
A. Nonspiking Agents

Generally, there are two approaches to RL: 1) value-function
methods (e.g., [6], [26], [59]), which build long-term utilities
of decisions that induce a control policy, and 2) policy-
search methods (e.g., [60]— [64]), which directly optimize
the parameters of the policy with respect to the long-term
cumulative reward. Our nonspiking agents implement simple
value-function reinforcement learning algorithms and, more
specifically, Q-learning [6] and SARSA [26].

The value function is stored in a lookup table since there
is no need for function approximation in our simple scenario,
where the state-action space is small. Moreover, as Sandholm
and Crites [65] point out, lookup tables yield better results and
are faster than simple recurrent NNs in the IPD.

In all simulations, the agents are provided only with
incomplete information: they only receive the state of the en-
vironment, i.e., the actions of both the agent and the opponent
in the previous round, but not the payoffs associated with
their opponent’s action. A Boltzmann exploration schedule is
utilized, as it gives a good balance between exploration and
exploitation. More specifically, an action q; is selected from
state s with probability p(a;) given by

Qls.ai)/1

R

ae{C,D}

plai) = ey

where Q(s, a;) is the value of state s and action a;, and the
temperature ¢ is given by r = 1 + 10 x 0.99", with n being
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the number of games played so far. The constants 1, 10, and
0.99 are chosen empirically.

Two types of simulations were performed: 1) between a
learning and a nonlearning agent, and 2) between two learning
agents.

1) Learning Agents Against Nonlearning Opponents: These
initial simulations compare three learning agents against oppo-
nents that do not use any learning algorithm (single-agent RL).
Our learning agents are the following: a) “Q” (for Q-learning);
b) “SARSA”; and c¢) “RTQ” (for reward transformation
Q-learning), i.e., an agent that transforms the external payoff
values to different internal rewards. These internal rewards
were found by evolutionary optimization with the purpose of
increasing mutual cooperation between two Q agents, while
still satisfying the constraints of the IPD [58]. Their values
are the following: 7/ = 3.81, R = 1.76, P’ = —44.82,
and S’ = —46.32 (details of the method used to determine
these values can be found in [58]). The nonlearning opponents
are named after the strategies they use: “Only-Cooperate”
selects only the Cooperate (C) action; “Only-Defect” selects
only the Defect (D) action; “Random(p)” selects a random
action with a specified probability of cooperation p; “Tit-for-
Tat” (TFT) [66] starts with action C and afterwards repeats
its opponent’s previous action; and ‘“Pavlov” (also known as
“Win-Stay, Lose-Shift”) [67] changes its actions only if the
two lowest payoffs, i.e., S and P, were received.

2) Learning Agents Against Learning Opponents: The latter
simulations compare two learning agents (i.e., Q, SARSA,
and RTQ) against each other (MARL). The multiagent system
can either be homogeneous or heterogeneous where: a) a
homogeneous system is when both agents employ the same
learning algorithm, with the same or similar parameters, and
b) a heterogeneous system is when both agents employ the
same algorithm with dissimilar parameters, or different algo-
rithms. The parameters are the step size, a, and the discount
factor y.

B. Spiking Agents

The game simulation is repeated with the two players
implemented by two spiking NNs. The networks’ architecture
is depicted in Fig. 1. Each network has a hidden layer of
60 leaky integrate-and-fire (LIF) neurons [68], [69] and an
output layer of 2 LIF neurons. Choosing the right spiking
neuron model when building a spiking NN is extremely
important [70]. In our case, given the complexity of our
spiking NN system, the LIF neuron model was chosen as
the basic node of each spiking NN because of its simplicity
and computational effectiveness compared to the more bio-
logically detailed conductance-based models like the Hodgkin
and Huxley model [71] or even spiking neuron models of
intermediate complexity such as the Izhikevich model [72]
(used in a spiking network model by Arena et al. [42]), the
model proposed by Christodoulou et al. [73], or the McGregor
model [74], [75] (used in a network of spiking neurons by
Lin et al. [76] and by Swiercz et al. [77]).

Learning is implemented through reinforcement of stochas-
tic synaptic transmission [28] as well as through reward-
modulated STDP with eligibility trace [29]. Although these
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Fig. 1. Two spiking NNs competing in the IPD. Two individual networks
with multilayer perceptron-type architecture receive a common input of 60
neurons, depicted in the middle of the figure. Each network (left and right)
has two layers that make full feedforward connections between three layers of
neurons; the 60 shared input neurons, 60 LIF hidden neurons, and 2 LIF output
neurons. The networks have full connectivity, though only some connections
are shown for clarity. Neurons are randomly chosen to be either excitatory or
inhibitory. The two networks simulate the corresponding two players of the
game.

optimization algorithms are not experimentally proven, both
synaptic facilitation (which can be enabled by synaptic trans-
mission) and STDP are biological processes that were shown
to be related with prediction tasks [78] and thus could be used
by the brain for the purposes of optimization. Two different
sets of simulations were carried out, one for each learning
scheme. The equation and values of the parameters used for
modeling the LIF neurons, for each simulation set, as well as
the learning equations, are the same as the ones used in [28]
and [29] (given also in the Appendix), apart from the value
of the mean weight of the conductance used for the excitatory
synapses in reinforcement of stochastic synaptic transmission
[28], which is now set to 14 nS.

In reinforcement of stochastic synaptic transmission
Seung [28] makes the hypothesis that microscopic random-
ness is harnessed by the brain for the purposes of learning
(see Appendix A for details). The model of the hedonistic
synapse is developed along this hypothesis. Briefly, within the
framework of the model, each synapse acts as an agent who
pursues reward maximization through the actions of releasing
or not a neurotransmitter. The algorithm includes a dynamical
variable of eligibility trace [79], which signifies when a
synapse is eligible for reinforcement by keeping a record of
the synapse’s recent actions with respect to neurotransmitter
release. Synapses effectively learn by computing a stochastic
approximation to the gradient of average reward. Moreover,
if each synapse behaves hedonistically, then the network as a
whole behaves hedonistically, pursuing reward maximization.
The learning rate is set equal to 0.1.

In reward-modulated STDP with eligibility trace [29] the
modulation of standard antisymmetric STDP with a reward
signal leads to RL (see Appendix B for details). The synaptic
efficacies exhibit Hebbian STDP when the network is rewarded
and anti-Hebbian when punished, allowing the network to
associate an output to a given input only when accompanied
by a positive reward and disassociate one when accompanied
by a punishment, permitting thus the exploration of better
strategies. Moreover (as in Seung’s [28] algorithm) it involves
a biologically plausible variable, the eligibility trace [79],
that serves as a decaying memory of the relation between
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recent pre- and postsynaptic spike pairs. The eligibility trace
signifies when a pair of spikes is eligible for reinforcement.
The learning rate used in the respective simulations is equal
to 0.7 x 10~*, while a single game of IPD has 200 rounds and
the results recorded are averaged over 10 games.

Both algorithms are derived as an application of the online
partially observable Markov decision process reinforcement
learning algorithm [62] and also keep a record of the agents’
recent actions through the eligibility trace. In reinforcement
of stochastic synaptic transmission, the synaptic connection
strengths are constant, the agent is regarded to be the synapse
itself that acts by releasing a neurotransmitter vesicle, and the
parameter that is optimized is one that regulates the release
of the vesicle. On the other hand, in reward-modulated STDP,
the agent is regarded to be the neuron that acts by spiking
and the parameter that is optimized is its synaptic connection
strengths.

The networks learn simultaneously but separately where
each network seeks to maximize its own accumulated reward.
The game is simulated through an iterative procedure which
starts with a decision by the artificial agents, continues by
feeding this information to the agents, during which learning
takes place, and ends by a new decision. The agents take
their first decision randomly. During each learning round, the
input to the system is presented for 500 ms and encodes the
decisions the two networks had at the previous round. This
means that after round k, the outcome of the game (at round k)
is fed into the system for 500 ms and the synapses are changed
according to it. Each network’s decision is encoded in the
input, by the firing rate of two groups of Poisson spike trains.
The first group will fire at 40 Hz if the network cooperated and
at 0 Hz otherwise. The second group will fire at 40 Hz if the
network defected and at 0 Hz otherwise. Consequently, four
groups of Poisson spike trains provide the system’s input, with
two groups always being active, preserving thus a balance at
the output neurons’ firing rates at the beginning of learning.
Any significant difference in the output neurons’ firing rate at
any time should only be induced by learning and not by the
differences of the driving input firing rates. At the end of each
learning round, the networks decide whether to cooperate or
defect for the game’s next round, according to the value each
network assigns to the two actions. These values are reflected
by the output neurons’ firing rates at the end of each learning
round. The cooperation value for network I and II is taken
to be proportional to the firing rate of output neurons 1 and
3, respectively. Similarly, the defection value for network I
and II is taken to be proportional to the firing rate of output
neurons 2 and 4, respectively. At the end of each learning
round, the firing rates of the competing output neurons are
compared, for each network separately, and the decisions are
drawn. When the two networks decide their play for the next
round of the IPD, they each receive a distinct payoff given
their actions and according to the game’s payoff matrix (see
Table I). This same payoff is also the global reinforcement
signal (scaled down) that will train each network during the
next learning round and thus guide the networks to their next
decisions. The payoffs are scaled down when administered
as reinforcements to the networks in order to incorporate

the distinction between signals given by the environment and
how these signals are internally processed (as in [51]). The
modeling of this process makes our spiking agents similar to
our nonspiking RTQ agents (see Section II-A). The scaled-
down payoffs combined with a small learning rate ensure in
addition that changes on the variables controlled by learning
are made in a smooth and gradual way. For example, if the
outcome of the agents was a CD, then according to the payoff
matrix network I should receive a payoff of —3 for cooperating
and network II a payoff of +5 for defecting. As stated, the
reinforcement signal is specified according to the aggregate
activation of the output units at the end of a learning round
since the decision of the agents whether to cooperate or defect
depends on the aggregate relative activation of each network’s
output units. This reinforcement is constant in value during the
next 500 ms of learning (and is different from 0) and is applied
in the time step following the spikes of the output neurons,
as prescribed by the original learning algorithms [28], [29]. In
addition, each network is reinforced for every spike of their
output neuron that was “responsible” for the decision at the last
round and therefore for the payoff received. Hence in the CD
case, network I would receive a constant penalty of —3 (scaled
down to —1.3) for every spike of output neuron 1 (remember
that the firing rate of output neuron 1 reflects the value that
network I has for the action of cooperation) and network II
would receive a constant reward of +5 (scaled down to 1.5) for
every spike of output neuron 4 (remember that the firing rate
of output neuron 4 reflects the value that network II has for the
action of defection). Since the learning algorithms work with
positive and negative reinforcements that are directly applied
to the synapses and are extracted from the payoff matrix, it
is then necessary that the payoff matrix contains both positive
and negative values. The networks thus learn through global
reinforcement signals which strengthen the value of an action
that elicited a reward and weaken the value of an action that
resulted in a penalty.

III. RESULTS AND DISCUSSION
A. Nonspiking Agents

The games were run for 50 trials with 1000 rounds per trial.
All combinations of agents were tested with a and y taking
the values 0.1 or 0.9 (i.e., slow/fast learning, weak/strong
discounting).

1) Learning Agents Against Nonlearning Opponents: As
described in Section II-A, the first simulations are between
three learning agents (i.e., Q, SARSA, and RTQ) and oppo-
nents that do not use any learning algorithms (i.e., OnlyCo-
operate, OnlyDefect, Random, TFT, and Pavlov).

Table II shows the best results of the simulations between
the three agents and the nonlearning opponents. In terms of
performance, they are ranked based on the percentage of:
1) DC in the case of OnlyCooperate opponent, since the agent
needs to learn to play D in order to exploit its opponent’s
weakness and accumulate more reward; 2) DD in the case of
OnlyDefect, as the agent needs to learn to play D so that it
does not get exploited by the opponent; 3) CC in the cases of
TFT and Pavlov, since CC can be attained against such reactive
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TABLE 11
RESULTS WITH NONSPIKING LEARNING AGENTS AGAINST
NONLEARNING OPPONENTS. THE HIGHEST RANKING PERFORMANCE
FOR EACH LEARNING AGENT IS SHOWN IN BOLD (SEE TEXT FOR
EXPLANATION OF THE BASIS OF THE RANKINGS). HIGHEST CC Is
ACHIEVED WHEN AN RTQ AGENT COMPETES AGAINST A TFT OR A
PAVLOV OPPONENT

Learning agent Nonlearning Outcome (%)
o y Agent CC CDh DC DD
RTQ 0.1 09 6 0 9% 0
SARSA 0.1 09 OnlyCooperate 15 0 85 0
Q 0.1 09 20 0 80 0
RTQ 09 0.1 0 25 0 75
SARSA 09 09 OnlyDefect 0 25 0 75
Q 09 0.1 0 32 0 68
RTQ 09 09 9 05 05 0
SARSA 09 09 TitForTat 95 2 2 1
Q 09 09 93 3 3 1
RTQ 09 09 99 0 05 05
SARSA 09 09 Pavlov 93 1 3 3
Q 09 09 91 1 4

SARSA 09 09 5 14 20 61

Q 0.9 0.9 | Random(p = 0.25) 6 19 19 56
RTQ 09 0.1 6 20 18 56
8
8

Q 0.1 09 8 42 42
SARSA 0.1 0.9 | Random(p = 0.50) 9 42 41
RTQ 09 0.1 14 13 37 36
Q 0.1 09 14 4 62 20
SARSA 0.1 0.9 | Random(p =0.75) | 14 5 61 20
RTQ 09 0.1 26 9 49 16

opponents; 4) DD in the case of Random(p = 0.25), since this
agent is similar to the OnlyDefect agent with the difference
being that it cooperates with a small probability; 5) DC and
DD in the case of Random(p = 0.50), as this agent cooperates
half of the time; and 6) DC in the case of Random(p = 0.75),
since this agent is similar to the OnlyCooperate agent with the
difference that it defects with a small probability.

The results show that the RTQ agent achieves the DC
outcome faster than SARSA and Q, when playing against
OnlyCooperate, which is most probably due to the fact that the
rewards it uses (7’ and R’) are smaller than the corresponding
payoff values. The difference between SARSA and Q is neg-
ligible. When playing against OnlyDefect, RTQ and SARSA
achieve 75% DD and Q achieves only 68%. As this is a simple
deterministic bandit problem (where the agents are facing the
problem of selecting C or D and receiving the rewards S or P),
we would have expected the agents to play D more. The results
shown in Table II were obtained with the exploration method
described in Section II-A, which was chosen to illustrate rapid
convergence to the CC outcome in the MARL case and more
specifically, for RTQ in self-play, as shown in Section III-A.2.
Simulations with e-greedy exploration (with ¢ = 0.1) (not
shown) demonstrated that against the OnlyDefect opponent,
all three agents reach the DD outcome nearly 95% of the time
with o = 0.9 and y = 0.1, for the same number of trials and
rounds, the remaining 5% can be attributed to exploration.
When the opponent was a TFT agent, RTQ achieves CC
99% of the time, followed by SARSA and then Q, where

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 4, APRIL 2011

CC attained 95% and 93%, respectively. Similar results are
observed when the opponent is Pavlov, where RTQ manages to
achieve CC 99% of the time, but SARSA 93% and Q 91%. It is
worth noting that for both TFT and Pavlov, when the discount
factor of the learning agents was low (i.e., y = 0.1), CC
percentage was 70—76% for RTQ and 18—25% for both Q and
SARSA (results not shown). This indicates that a high discount
factor is required to reach and maintain mutual cooperation.
Against the Random(p = 0.25) opponent (i.e., the agent that
chooses C with probability 0.25), SARSA achieves DD 61%
of the time, while Q and RTQ 56%. As with the case of the
OnlyDefect opponent, results with e-greedy exploration (with
€= 0.1) (not shown) indicate that the learning agents play D
more often than in the case of softmax exploration, since the
DD outcome occurs 69% of the time with Q and SARSA and
67% of the time with RTQ (e = 0.9 and y = 0.1 for all agents,
and the number of trials and rounds was kept the same as in all
simulations). As the Random agent becomes more cooperative
(p =0.50, p = 0.75), the DD outcome diminishes, while the
DC outcome rises, for all learning agents.

2) Learning Agents Against Learning Opponents: In the
previous section, the problem was effectively single-agent RL,
as the opponents did not use any learning algorithms. This
section deals with the MARL problem. More specifically,
the three learning agents compete against each other and
themselves under different parameter settings. Fig. 2 depicts
the results of the RTQ agent against itself, ranked by the
percentage of CC. The system is homogeneous (i.e., both
agents use the same parameters) only in the Sth, 7th, 8th,
and 10th cases. Interestingly, the results illustrate that CC is
highest (i.e., 97% in the 10th case) when both agents learn fast
(e = 0.9) and use weak discounting (y = 0.1). It has to be
noted that at the 200th round (note that the spiking simulations
run only for 200 rounds, see Section III-B) the percentage of
CC was already very high, i.e., 89%, and the accumulated
reward of the system, i.e., the sum of rewards of the agents,
was 1401.52, while the theoretical maximum that corresponds
to playing CC all the time (thus receiving R+ R =4+4 =8
for each round) is 1600 (200 x 8).

Although not shown here, convergence to the CC outcome
was observed only for the best four cases (cases 7—10 of
Fig. 2), and was measured with two metrics. More specifically,
for every round we calculate: a) the deviation of the reward
the system receives (i.e., the sum of the agents’ rewards) from
the “desired” one that corresponds to the CC behavior (and
is equal to 8 according to Table I), and b) the rate of change
of the Q-values, whose calculation involves normalization to
accommodate for the fact that the scale of rewards of the RTQ
agent is different from the one of the Q and SARSA agents.

Slower learning, by at least one of the agents, seems to
decrease the percentage of the CC outcome because the agents
might need more time to converge. This is clearly illustrated
in Fig. 2, since the best three results (cases 8—10) are obtained
when both agents learn fast. The only exception is observed
between the 6th and 7th cases: when both agents use smaller
learning rates and discount factors, the performance of the
system is better (i.e., 89% in the 7th case) than when the
first agent switches to a higher learning rate (i.e., 86% in
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Performance of Q-learning, SARSA, and RTQ agents against each other in homogeneous and heterogeneous configurations ranked based on the

percentage of mutual cooperation (CC). Highest CC is achieved for Q-learning with & = 0.9 and y = 0.1 in self-play.

the 6th case). This might suggest that the system should be
homogeneous (as in the 7th case).

On the other hand, weak discounting, at least by one of
the agents, seems to increase performance, as the CC outcome
occurs more frequently. For example, consider the 1st and 2nd
cases: the first agent uses a high learning rate and discount

factor, whereas the second agent uses low ones (2nd case).
When the second agent switches to a strong discount factor
(1st case), the CC performance drops from 75 to 64%. This
is more clearly illustrated in the 8th, 9th, and 10th cases (i.e.,
the best three configurations). Starting from a high discount
factor for both agents, the performance increases as one agent
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switches to a low discount factor (i.e., from 94 to 96%) and
increases even more as the other agent switches to a low
discount factor as well (97%). It is worth noting that this
observation is in contrast with the results obtained when all
learning agents competed against the reactive opponents TFT
and Pavlov in Section III-A.1, as a higher discount factor is
required there in order to reach the CC outcome. The exception
is found between the 4th and Sth cases: both agents use a
smaller learning rate and the first agent uses a high discount
factor, whereas the second agent uses a low one (4th case).
When the second agent changes to a high discount factor, the
performance increases from 80 to 84% (from 4th to 5th case).
This might suggest that the system should be homogeneous
(as in the 5th case).

Fig. 3 shows the best results from the comparison of
the other learning agents, ranked on the basis of the CC
percentage. Here the system is homogeneous in the 1st, 3rd,
8th, and 10th cases. Comparing the Ist and 10th cases, when
both Q-agents switch from a high discount factor (1st case) to
a low one (10th case), CC occurs more frequently, i.e., from 41
to 69% of the time. Similar results are obtained with SARSA
agents (3rd and 8th cases), where the CC percentage changed
from 48 to 66%. The configurations “Q versus SARSA”
(2nd and 9th cases) have similar results as well, since the
performance changed from 43 to 68%. When RTQ competes
with SARSA, the results follow the same pattern (i.e., highest
CC percentage when both agents are myopic). This does
not happen, however, when RTQ competes with Q. More
specifically, when switching from farsighted to myopic agents,
in the former case the percentage of CC increases from 50 to
54%, whereas in the latter case CC decreases from 59 to 52%.
It is worth noting that none of the configurations converged.

Although not shown in Fig. 3, when the learning rate is
low, the DD outcome occurs more frequently. The parameters
that were found to increase DD are o = 0.1 and y = 0.9
for both agents, except for the case of “RTQ versus SARSA,”
where both agents used a low discount factor and RTQ used
a high learning rate while SARSA a low one. For all these
configurations, the range of mutual defection was 41— 46%,
but the systems did not converge.

By observing the Q-values, we noticed that in the best three
configurations of Fig. 2 (cases 8—10, where two RTQ agents
with o = 0.9 competed), at the end of the simulation the Q-
value corresponding to state CC and action C converged to a
positive number, whereas all the other Q-values converged to
negative numbers, for both agents. In the best three configura-
tions of Fig. 3 (cases 8—10), we observed a separation of the
Q-values to positive, for the ones that correspond to action C
from any state, and negative, for the ones that correspond to
action D from any state, for both agents, but without reaching a
plateau. This observation for cases 8-10 of Fig. 3 was different
from what we observed in cases 8-10 of Fig. 2, and in addition,
it was not observed in the worst case of Fig. 3 (case 1), where
the discount factor for both Q-agents was set to 0.9, as some
values that were positive for the first agent were negative for
the other agent and vice versa.

In order to show the effect the evolved internal rewards have
on the performance of the system, in terms of the accumulated
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Fig. 4. Performance of nonspiking Q-agents: effect of the evolved internal
rewards on the accumulated payoff. The performance of the system when
both agents use internal reinforcement signals (thick solid line) and when the
source of reinforcement is the payoff matrix (dashed line). The performance
increased significantly when the internal reinforcement signals were used.
The agents managed to engage in mutual cooperation. The theoretically best
performance is shown for comparison (dot-dashed line).

payoff over time, we need to compare two configurations
that have the same parameters but change only the type of
agents from Q to RTQ (since RTQ agents use the Q-learning
algorithm with different reinforcement signals). This effect is
clearly illustrated in Fig. 4, where the best configuration (10th
case) of Fig. 2 is compared with the best configuration (10th
case) of Fig. 3. The system manages to engage in mutual coop-
eration from very early in the game when RTQ agents are used,
and thus accumulates an average reward of 1401.52 (thick
solid line) in 200 rounds, which is 87.6% of the best possible
performance (1401.52/1600), whereas when Q agents are used,
the system accumulates an average reward of 372.64 (dashed
line) in 200 rounds, which is only 23.3% of the best possible
performance (372.64/1600). As the exploration schedule was
selected with the purpose of running the simulation for 1000
rounds, it has to be noted that the performance of the system at
1000 rounds when RTQ agents are used, slightly increases to
96.5% of the best possible performance (7715.92/8000). When
Q agents are used, however, the performance increases more
drastically to 65.6% (5246.24/8000). This shows that at 200
rounds the Q agents did not learn to cooperate as frequently
as they do in 1000 rounds.

B. Spiking Neural Network Agents

For the system configuration described in Section II-B,
a single game of the IPD consists of 200 rounds during
which the two networks seek to maximize their individual
accumulated payoff by cooperating or defecting at every round
of the game. The simulations aim to investigate the capability
of the spiking NNs to cooperate in the IPD. It has to be
noted that when the spiking agents played with nonlearning
opponents, we had similar results to the nonspiking agents (not
shown).

The following simulation involves an implementation of the
game where the spiking agents learn through reinforcement
of stochastic synaptic transmission [28]. When we directly
applied the algorithm as originally proposed by Seung [28],
using a single global reinforcement signal (see Section II-B),
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Fig. 5. Spiking NNs learning through reinforcement of stochastic synaptic
transmission. The system’s performance during the IPD with (thick solid
line) and without (dashed line) the extra reinforcement administration. The
performance increased dramatically when extra global signals were given as a
feedback to the agents. The agents managed to engage in mutual cooperation.
The theoretically best performance is shown for comparison (dot-dashed line).

the agents did not show the capacity needed in order to
learn how to cooperate according to the results shown in
Fig. 5 (dashed line).

The accumulated payoff is calculated by adding together
the payoff each network received according to the payoff
matrix of Table I. For example, if at a given round the
outcome was CC then a total 4 + 4 = 8 will be added on the
accumulated payoff. For the DC and CD outcome the total
added payoff is 2 and for DD is —4. Given this, the system
could achieve a maximum of 1600 (200 rounds x 8) if the two
networks cooperated all the time. Results show that the system
accumulated a total reward of less than 550 because of a low
cooperative outcome. The CC outcome occurred only 31% of
the time, which is a little more than if it had occurred by
chance (25%). This is because the agents did not learn how to
cooperate in order to maximize their long-term reward and the
system performed suboptimally. A closer examination revealed
that at the end of each learning round both output neurons
of each network resulted with approximately the same firing
rate. This effect was due to positive feedback which increases
synaptic strength without bounds, leading to saturation of the
synaptic connection and thus preventing further learning from
taking place (like the limitation of classical Hebbian learning).

The problem was tackled by enhancing the competi-
tion between the output neurons through introducing addi-
tional global reinforcement signals that were administered
alongside the original ones. These signals were adminis-
tered to the networks for every spike of the output neu-
rons that was not “responsible” for the decision at the
last round. In the CD case, an additional reward of +1.15
(scaled down value corresponding to +1.5, see Section II-B)
is provided to network I for every spike of output neuron 2 and
an additional penalty of —1.15 (scaled down value correspond-
ing to —1.5, see Section II-B) is provided to network II for
every spike of output neuron 3. The value of 1.15 applies to all
outcomes and is chosen to be small enough such that: 1) any
changes to the values of the players’ actions are primarily
induced by the reinforcement signals provided by the payoff
matrix, and 2) it does not cause any violation of the IPD rules.
In effect, these opposite-in-sign signals update the value of the
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Fig. 6. Spiking NNs learning through reward-modulated STDP with
eligibility trace: the effect of the extra reinforcement administration. The
system performed much better when extra global reinforcement signals were
given as a feedback to the agents (thick solid line). In contrast, it accumulated
a very small total payoff when no additional signals were given (dashed line).
The theoretically best performance is shown for comparison (dot-dashed line).

action that was not chosen by each network and can be justified
as an additional feedback to the agents for their performance
in the previous round. Overall, during a learning round, each
network receives global, constant in value, and opposite-in-
sign reinforcements that are applied in the time step following
the spikes of both of its output neurons. One of the two signals
is due to the payoff matrix of the game and its purpose is to
“encourage” or “discourage” the action that elicited reward or
penalty, and the other signal is complementary and its purpose
is to “encourage” or “discourage” the action that could have
elicited reward or penalty if had been chosen in the previous
round of the game.

Fig. 5 (thick solid line) shows the system’s performance
when the additional reinforcement signals were incorporated
into the learning algorithm. The simulation was identical to
the previous one apart from the enhanced reinforcement ad-
ministration scheme. The difference in performance is evident.
The networks accumulated a total payoff of almost 1500 by
cooperating 91% of the time. The results reveal that the agents
learned to maximize long-term reward through cooperative
behavior. It has to be noted that the CC outcome not only
persisted during the final rounds of the simulations, but it also
did not change after a point due to the system’s dynamics that
were evolved by that point in time in such a way to produce
CC consistently.

The following simulation implements the IPD where the
agents learn through reward-modulated STDP with eligibility
trace [29]. As shown in the previous simulations (where the
agents learned through reinforcement of stochastic synaptic
transmission [28]), the administration of additional, opposite-
in-sign, global reinforcement signals proved to be vital for the
successful training of the competing agent that attained the co-
operative outcome. We therefore tested the importance of this
additional reinforcement administration, for the performance
of the system when trained with reward-modulated STDP with
eligibility trace. Fig. 6 shows that the implementation of the
game was successful when the additional reinforcement signal
was administered.

The CC outcome was attained after a relatively short learn-
ing period, which enhanced the accumulation of reward by
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Fig. 7. Eligibility trace time constant effect (with extra reinforcement) when
the spiking NNs learn with reinforcement of stochastic synaptic transmission.
The system collected a much higher total reward when the eligibility trace
time constant of both networks was equal to 20 ms (thick solid line) compared
to 2 ms (dashed line). The theoretically best performance is shown for
comparison (dot-dashed line).

the system. This reveals that after a certain point the networks
successfully learned to resist the temptation payoff provided
by defection in order to maximize their long-term reward
through cooperation, enabling thus reward maximization by
the system as well. However, the system performed badly
when no extra reinforcement was given. The agents cooperated
88% of the time when the extra reinforcement was added.
The performance deteriorated significantly when no additional
reinforcement signals were administered to the networks since
the cooperation level fell 60 percentage points (from 88 to
28%) and the defection level increased 21.5 percentage points
(from 6 to 27.5%). The results with the current learning
scheme are in line with our previous results (see Fig. 5) with
regard to the effectiveness of the additional reinforcement in
the attainment of a cooperative behavior. The administration of
extra reinforcement is thus vital for a high payoff accumulation
by the spiking NN agents and therefore all the subsequent
simulations are carried out with extra reinforcement adminis-
tration.

As explained, the eligibility trace is a dynamical variable
used to integrate time-related events and is utilized in Seung’s
algorithm [28] as a memory for each synapse’s past actions
with respect to releasing a neurotransmitter (see Section II-B).
The eligibility trace time constant regulates the decay of the
variable and signifies for how long these time-related events
are in effect integrated. In other words, a synapse with longer
eligibility trace time constant has a stronger memory than
a synapse with shorter eligibility trace time constant. The
following simulations are carried out in order to investigate the
effect memory has on attaining cooperative behavior. Two sim-
ulations were performed with the synapses of the two networks
having different eligibility trace time constants. The values for
both networks were set to 20 and 2 ms for the two simulations,
respectively. Therefore, during the first simulation the net-
works have a “strong memory,” whereas in the second they
have a “weak memory.” The results of both simulations are
shown in Fig. 7. The difference in the system’s performance
is obvious. When the system was configured with 20 ms
eligibility trace time constants, the accumulated payoff is much
higher than the one with 2 ms, which is a result of the
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Fig. 8. Eligibility trace time constant effect (with extra reinforcement) when
the spiking NNs learn with reward-modulated STDP. The system collected
a much higher total reward when the eligibility trace time constant of both
networks was equal to 25 ms (thick solid line) compared to 2 ms (thin dotted
line). The system performed in between when one network was configured
with 25 ms and the other with 2 ms (dashed line). The theoretically best
performance is shown for comparison (dot-dashed line).

difference in the CC outcome. With the eligibility trace time
constants set at 20 ms, the two networks learned quickly to
cooperate in order to maximize their long-term reward and
achieved the CC outcome 182 out of the 200 times. On
the contrary, when the system was configured with “weak
memory,” learning took effect much later during the game
(after the 100th round) and thus the system exhibited much
less cooperation (120 out of 200). However, the system with
both configurations eventually managed to learn to cooperate.
Results show that agents’ memory influences the cooperative
outcome of the game in the sense that it delays it to a great
extent. However, a weak memory does not destroy learning as
the networks eventually learned to cooperate.

In reward-modulated STDP with eligibility trace [29], the
latter serves as a decaying memory of the relation between
recent pre- and postsynaptic spike pairs. Three simulations
were performed with the neurons of the two networks having
different eligibility trace time constants. The values for both
networks were set to 25 and 2 ms, respectively, for the two
simulations, whereas during the third one, one network was
configured with 25 ms and the other with 2 ms. Therefore, dur-
ing the first simulation the agents had a strong memory, in the
second they had a weak memory, and in the third simulation
one agent had strong memory and the other had weak. The
results of all simulations are shown in Fig. 8. The difference
in the system’s performance is evident. When the system was
configured with 25 ms eligibility trace time constants for both
agents, the accumulated payoff is much higher than in the
case when the system was configured with 2 ms eligibility
trace time constants. During the former simulation, the agents
engaged in a behavior of mutual cooperation, whereas in the
latter they primarily defected. With the eligibility trace time
constants set at 25 ms, the two networks learned quickly
to cooperate in order to maximize their long-term reward
and achieved a total payoff of 1379 with the CC outcome
chosen 88% of the time. On the contrary, when the system
was configured with weak memory (2 ms eligibility trace
time constant for both agents), learning was sometimes totally
destroyed and thus the system resulted in exhibiting much less
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average cooperation level (50%) and a total payoff of 534. The
system performed slightly better in the final simulation where
one agent had a strong memory and the other had a weak one.
It accumulated a total payoff of 720 compared to the 534 of
the “memory-less” agents. However, the cooperation remained
at the same low level (49%).

The difference in the total payoff occurs due to the dif-
ference in the DD outcome rather than in the CC outcome.
In the case where both agents had a weak memory, they
both aimed for the temptation payoff and thus engaged in
a behavior of increased mutual defection (DD outcome was
38%), accumulating thus the smallest total payoff. Only the
system with the strong memory configuration managed to
exhibit high cooperation levels.

Overall, the results show that spiking NNs can successfully
implement artificial agents in a demanding MARL task. The
best results were obtained with high values of eligibility
trace time constants whereas the additional, opposite-in-sign,
global reinforcement signals proved to be vital for successful
implementation of the game.

IV. CONCLUSION

The first part of this paper examined MARL with nonspik-
ing agents that use simple algorithms from the single-agent
RL literature and, more specifically, Q-learning and SARSA.
A comparison was done with another Q-learning agent that
uses different internal reinforcement signals than the external
payoff values, which we called the RTQ agent. We found
these signals by evolutionary optimization with the purpose
of rapidly increasing the CC outcome [58].

We initially tested the performance of the nonspiking learn-
ing agents against opponents that do not use any learning algo-
rithm and observed that cooperation was established when the
opponent used a TFT or a Pavlov strategy. The performance
was maximized when the learning agents were farsighted
and used a high learning rate. When the learning agents
played against other nonlearning opponents, the results were
as expected, i.e., the learning agent tried to get as much reward
as possible.

The experiments with the nonspiking agents were then
extended to the MARL case, i.e., when both agents use a
learning algorithm. According to these results, the only agent
that was able to rapidly converge to the CC outcome was the
RTQ agent. All other agents did not converge with the given
exploration schedule, however, it has to be noted that some
configurations did manage to frequently choose to cooperate
during the final rounds. In addition, the RTQ agents converged
faster when both agents use high learning rates and low
discount factors. This fast convergence of the RTQ agents
might be due to the combination of high learning rates and
low discount factors with the empirically chosen exploration
schedule. In particular, this exploration schedule was chosen
so as to achieve convergence to CC in less than 1000 rounds
with the RTQ agents. Other homogeneous configurations (i.e.,
with Q and SARSA agents in self-play) benefit from high
learning rates and low discount factors as well, since mutual
cooperation is increased with these settings.

While many algorithms from the MARL literature were
designed in order to fulfill certain criteria, in this paper
we showed that, in the case of nonspiking agents, the
evolved internal reinforcement signals could make the “naive”
Q-learning behave efficiently in repeated general-sum games.
Our approach [58] did not evolve the payoff values while
the agents learn. More specifically, the algorithm we used
[58] searched for fixed internal rewards for the agents without
changing their goal, since the evolved solutions have a valid
payoff structure. This is in line with the way biological
evolution hard-wires primary rewards in animals due to their
reproductive success. While the distinction between internal
rewards and external sensations was taken into account [51],
for simplicity we ignored the mapping between them. The
difference in performance between normal Q agents and our
newly created RTQ agents might indicate that the evolved
internal reinforcement signals create agents that are motivated
to cooperate since they implicitly contain a sense of reward
and penalty, thereby “pointing at” the goal which in our case
is mutual cooperation.

The work in this paper applies also spiking neural agents
combined with biologically plausible reinforcement learning
schemes in a demanding multiagent task. In particular, it
evaluates the effectiveness of reinforcement of stochastic
synaptic transmission [28] and reward-modulated STDP [29]
in the general-sum game of the IPD. Results showed that both
investigated learning algorithms managed to exhibit “sophis-
ticated intelligence” in a nontrivial task. The spiking agents
showed a capacity for playing the game along the lines of
game theory in a way that resembles the behavior of real
players. During most of the simulations, the networks managed
to adapt to the challenges of the game and make decisions
according to the other player’s decisions in order to maximize
their accumulated payoff. Most importantly, they “displayed
intelligence” because when the game flow allowed for the
Pareto-optimum solution to be reached they “took advantage
of the possibility” and settled to the solution by choosing
cooperation for the rest of the game.

In addition, this paper extended the reinforcement learn-
ing algorithms for spiking NNs with additional, opposite-in-
sign and global reinforcement signals that were concurrently
administered along with the signals specified by the payoff
matrix of the game. The extended reinforcement adminis-
tration scheme applied a positive global reinforcement to
one output and a negative global reinforcement to the other
output. The administration of additional global reinforcement
signals, which increased competition at the neuronal and
synaptic level, proved both novel and necessary for the suc-
cessful performance of the learning algorithms, which enabled
the agents to learn to engage in high mutual cooperation.
More specifically, the administration of additional global re-
inforcement signals was essential, so as to avoid a positive
feedback effect which would have increased the synaptic
strength without bounds, leading to saturation of the synaptic
connection and thus preventing further learning from taking
place (like the limitation of classical Hebbian learning). There-
fore, one could conclude that, in cases where more than one
output neuron competes for reinforcement in a spiking NN,
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the global evaluation signal (in both Seung’s reinforcement
of stochastic synaptic transmission [28] and Florian’s reward-
modulated STDP [29]) should consist of global reward and
penalty accordingly, for avoidance of possible synaptic satu-
ration.

In the case of spiking NNs, the successful application of
both learning algorithms [28], [29] to the IPD required high
values of eligibility trace time constants for both networks.
It follows that the extent to which the reinforcement applies
in changes that happened before determines the success of
the learning algorithms. Results showed that reinforcement
should apply to changes over a longer period as agents with a
“stronger memory”’ configuration achieved the best CC result,
indicating the importance of memory in effective MARL.

Taking into consideration our results with both spiking and
nonspiking agents, we can see that in both cases the system
accumulates higher CC reward when both agents have: 1) high
learning rate and low discount factor in the case of nonspiking
agents, or 2) “strong” memory (achieved with long eligibility
trace time constant), in the case of spiking agents. In order
to make a more direct comparison between the spiking and
nonspiking systems, we could employ temporal difference
learning in our spiking NNs as in [40] and use NN nonspiking
agents instead of tabular ones. In addition, it is also desirable
for the payoff matrix of the nonspiking agents to mix positive
and negative values (as in [80]), which, if viewed as another
technique of introducing competition into the system, could
explain the enhancement of the CC outcome. As mentioned
in Section II-B, this mixture is necessary for the spiking
agents. Moreover, as in [51], both spiking and nonspiking
RTQ agents incorporate the notion of the separation of the
environment into an external and an internal one, where the
external environment is effectively the payoff matrix and the
internal one is part of the agent and provides the transformed
rewards. The modeling of this process proved to be beneficial
for spiking and nonspiking RTQ agents.

Potential applications for MARL with nonspiking agents
arise in negotiations and conflict resolution, with notable
examples being the Cyprus problem [81], [82] and the Greek—
Turkish arms race [83]. Spiking neural agents can be used
when more biological realism is required. For example, they
have already been used in our ongoing study that aims to
investigate how and when internal conflict can be resolved
through self-control behavior [84], [85]. Brain imaging results
on internal conflict reveal two distinct brain systems com-
peting for control of the organism in the form of relative
activations [86]. In addition, according to [87], such conflicts
might be resolved as if they were a strategic interaction
between rational subagents of the brain. This particular inter-
action can be modeled by the IPD, where the players map to
the brain’s subagents which have conflicting and distinct value
systems [87]. Moreover, the CC outcome corresponds to the
agents compromising and the organism exhibiting self-control.
In our study [84], [85], a spiking NN maps to each of these
neural systems implementing a subagent of the brain. Through
this particular interaction, we investigated the neuronal and
psychological variables that enable the conflict to be resolved
through self-control behavior. Certainly, a spiking agent sys-
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tem is more computationally expensive and should only be
used when the task in question demands more biologically
realistic models, as in our modeling of the high level behavior
of self-control [84], [85], or in our recent finding where we
proved that high firing irregularity enhances learning [88].

In general, as it can be seen from the results, the behavior
of spiking and nonspiking agents is in effect similar. We could
therefore argue that spiking agents could equally well be used
in multiagent interactions as nonspiking agents.

APPENDIX
EQUATIONS FOR SPIKING NEURAL NETWORK AGENTS

A. Reinforcement of Stochastic Synaptic Transmission

Briefly, within the framework of the model [28], each
synapse acts as an agent that pursues reward maximization.
Upon arrival of a presynaptic spike, a synapse can take two
possible actions with complementary probabilities: release a
neurotransmitter with probability p or fail to release with
probability 1 — p. The release parameter ¢ is monotonically
related to p by the sigmoidal function given by

1
l+ed’

Each synapse keeps a record of its recent actions through a
dynamical variable, the eligibility trace (e) [79]. It increases
by 1 — p with every release and decreases by —p with every
failure. Otherwise, it decays exponentially with a given time
constant. When a global reinforcement signal (k) is given to
the network, it is subsequently communicated to each synapse
which modifies its release probability according to the nature
of the signal (reward or penalty) and its recent releases and
failures. Learning is driven by modifying ¢ according to the
rule given by

p= 2

Ag=nxhxe 3)

where # is the learning rate.

Each network has a hidden layer of 60 neurons and an
output layer of 2 neurons, all modeled with the LIF neuron
given by

Cdd‘;l =—g(Vi=Vp)— zGij(Vi - Ejj)

J

where V7 = —74 mV, gr = 25 nS, and C = 500 pF, giving
a membrane time constant of 7 = 20 ms. The differential
equations are integrated using an exponential Euler update
with a 0.5 ms time step. When the membrane potential V;
reaches the threshold value of —54 mV, it is reset to —60 mV
(values as in the numerical simulations by Seung [28]). The
reversal potential E;; of the synapse from neuron j to neuron
i is set to either 0 or —70 mV, depending on whether the
synapse is excitatory or inhibitory. The synaptic conductances
are updated via G;; = W;;r;;, where r;; is the neurotransmitter
release variable that takes the value of 1 with probability equal
to the probability that the synapse from neuron j to i releases
a neurotransmitter (when j spikes) and O otherwise [28]. In
the absence of presynaptic spikes, G;; decays exponentially
with time constant 7y = 5 ms. W;; are the “weights” which
do not change over time and are chosen randomly from

“)
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an exponential distribution with mean 14 nS for excitatory
synapses and 45 nS for inhibitory synapses.

B. Reward-Modulated STDP with Eligibility Trace

In reward-modulated STDP with eligibility trace [29], the
efficacy of the synapse from neuron j to i is changed accord-
ing to

w;j(t +0t) = w;(t) +y ot r(t +t) z;;(t +0t)  (5)

where y is the learning rate, J¢ is the duration of a time step, r
is the global reward signal, and z is the eligibility trace which
is modified according to

zij(t +0t) = B zij (t) + i () /72 ©)

f is a discount factor between 0 and 1, ¢ is a notation for
the change of z resulting from the activity in the last time step,
and 7, is the time constant for the exponential decay of z. At
time ¢, ¢ is computed by the following set of equations

Gj (1) = Py @) fi(t) + Py (@) £;(0) @
Pty = P (t = 61)exp(=dt/t4) + Ay fi(t)  (8)
P ®= P (t —ot)yexp(—ot/t—) + A_ fi(t) )

where the variable Pi;-r tracks
spikes and the varable Pl.jf tracks the influence of postsynaptic
spikes. The time constants 74 and 7_ determine the ranges of
interspike intervals over which synaptic changes occur and
according to the standard antisymmetric STDP model, while
A4 and A_ are positive and negative constant parameters
respectively. Finally, f;(¢) is 1 if neuron i/ has fired at time
step ¢ or 0 otherwise.

The hidden and output layers of the networks are com-
posed of integrate-and-fire neurons with resting potential
u, = —70 mV, firing threshold § = —54 mV, reset potential
equal to the resting potential, and decay time constant 7 =
20 ms. These are the same values as used in the simulations by
Florian [29]. We also used the same dynamics for the neurons’
membrane potential given by

Ui (0) = uy +[ui (= 30) — uy T exp(=0t /) + > wij f(t —1).

(10

The membrane potential was reset to u#, when surpassed 6.

Weused 74 =7 =20ms, Ay =1, A_ = —1, ot = 1 ms,
y =0.7 % 104, and, unless specified, 7, = 25 ms.

the influences of presynaptic
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