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Abstract— In this paper, we investigate the importance of
rewards in Multiagent Reinforcement Learning in the context
of the Iterated Prisoner’s Dilemma. We use an evolutionary
algorithm to evolve valid payoff structures with the aim of
encouraging mutual cooperation. An exhaustive analysis is
performed by investigating the effect of: i) the lower and upper
bounds of the search space of the payoff values, ii) the reward
sign, iii) the population size, and iv) the mutation operators
used. Our results indicate that valid structures that encourage
cooperation can quickly be obtained, while their analysis shows
that: i) they should contain a mixture of positive and negative
values and ii) the magnitude of the positive values should be
much smaller than the magnitude of the negative values.

I. I NTRODUCTION

Multiagent Reinforcement Learning (MARL) research has
recently attracted a serious amount of scientific work. The
main problem of MARL is that the presence of multiple
learning agents creates a non-stationary environment, there-
fore, for a system to perform well, the agents might need to
base their decisions on a history of joint past actions and on
how they would like to influence future ones. In MARL there
could be different kinds of situations: fully competitive or
adversarial (which could be modelled with zero-sum games),
fully cooperative or coordinative (which could be modelled
with team games), and a mixture of both (which could be
modelled with general-sum games). As different issues arise
in each situation, researchers have developed algorithms with
a variety of research goals.

The current study lies in the “prescriptive non-cooperative”
agenda [1], i.e., we are interested in effective techniquesthat
result in high rewards for the agents. More specifically, we
investigate cooperation between self-seeking reward agents
in a non-cooperative setting. This situation is modelled with
the Iterated Prisoner’s Dilemma (IPD) which is a general-
sum game. Although the cooperative outcome is a valid
equilibrium of the IPD, our study does not aim to assess
the strength of the learning algorithms to attain equilibria of
the game or best responses to any given strategy; instead, we
focus on mutual cooperation and investigate whether it can be
achieved by simple reinforcement learning (RL) agents and
enhanced by evolving its payoff matrix. The rationale behind
this is that we would like to motivate the agents into cooper-
ation by making them perceive the payoff values differently,
i.e., as rewards and penalties. Therefore in this paper, the
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evolved payoff values represent reinforcement signals gener-
ated inside the agent and not external/environmental stimuli.
The mapping between external and internal reinforcements
is ignored for simplicity.

In its standard one-shot version, the Prisoner’s Dilemma
(PD) [2] is a game summarized by the payoff matrix of
Table I. There are two players, Row and Column. Each

TABLE I

PAYOFF MATRIX OF THE PRISONER’ S DILEMMA GAME WITH THE MOST

COMMONLY STUDIED PAYOFF VALUES. PAYOFF FOR THEROW PLAYER IS

SHOWN FIRST. R IS THE “ REWARD” FOR MUTUAL COOPERATION. P IS

THE “ PUNISHMENT” FOR MUTUAL DEFECTION. T IS THE “ TEMPTATION”

FOR UNILATERAL DEFECTION AND S IS THE “ SUCKER’ S” PAYOFF FOR

UNILATERAL COOPERATION. THE ONLY CONDITION IMPOSED TO THE

PAYOFFS IS THAT THEY SHOULD BE ORDERED SUCH THAT

T > R > P > S .

Cooperate (C) Defect (D)
Cooperate (C) R(= 3), R(= 3) S(= 0), T (= 5)

Defect (D) T (= 5), S(= 0) P (= 1), P (= 1)

player has the choice of either to “Cooperate”(C) or “Defect”
(D). For each pair of choices, the payoffs are displayed in
the respective cell of the payoff matrix of Table I. These
values were used in various IPD tournaments (see [3] and
[4]) and to the best of our knowledge are the ones most
commonly studied. In game theoretical terms, where rational
players are assumed, DD is the only Nash equilibrium
outcome [5] (i.e., a state in which no player can benefit by
changing his/her strategy while the other players keep theirs
unchanged), whereas the cooperative (CC) outcome satisfies
Pareto optimality [6] (i.e., a state in which it is impossible
to increase the gains of one player without increasing the
losses of other players). The “dilemma” faced by the players
in any valid payoff structure is that, whatever the other
player does, each one of them is better off by defecting than
cooperating. The outcome obtained when both players defect
however is worse for each one of them than the outcome they
would have obtained if both had cooperated. In the IPD, an
extra ruleR > (T + S)/2 guarantees that the players are
not collectively better off by having each player alternate
between C and D, thus keeping the CC outcome Pareto
optimal.

As pointed out in [7] “perfectly predicting the environment
is not enough to guarantee good performance”, because the
performance depends partly on properties of the environment.
In our case, we believe that the property of the environment
which plays a significant role in the CC outcome is the



reward function, since it specifies the type and strength of
the reinforcement the agents receive. Therefore, we introduce
a method that evolves the payoff values of the IPD while
satisfying its constraints, in order for simple RL algorithms
to rapidly reach the CC outcome.

The remainder of the paper is organised as follows. In Sec-
tion II, we present some related work. Section III describes
our methodology, while the results are given in Section IV.
Finally, in Section V, we briefly discuss some issues related
to this work and summarise the conclusions of this paper.

II. RELATED WORK

Sandholm and Crites [8] investigated MARL in the IPD
by representing the state-action estimates (Q-function) inside
lookup tables and simple recurrent neural networks and
showed that lookup tables lead to better results. However, the
payoff values they used were a scaled down version of the
commonly studied values indicated in Table I. They report
results where CC occurred 50% of the time in the final rounds
of the game, after running the simulation for 62.5 million
rounds. Our previous work with MARL in the IPD [9], [10]
showed that it is possible to train spiking neural networks to
reach mutual cooperation. In this case however, a mixture of
both positive and negative payoff values is necessary, as the
learning algorithms used [11], [12] work with positive and
negative reinforcements extracted from the payoff matrix and
directly applied to the synapses. This mixture was found to be
beneficial for non-spiking neural networks as well as lookup
tables.

Reward shaping is a technique that introduces imaginary
rewards to a reinforcement-learning algorithm, during the
learning process, as an addition to the actual reward from
the environment, with the purpose of helping the agent learn
a desirable behaviour more efficiently [13], [14]. Buffet et
al. [15] proposed a shaping methodology for automatically
designing multiagent systems. Their approach was based on
progressively growing: i) the complexity of the task, so that
agents would incrementally learn harder and harder tasks,
and ii) the multiagent system, by cloning agents that were
trained in a simple environment to a more complex one. They
tested their approach on simulated environments where the
agents had to coordinate in order to reach a common goal
and showed that incremental learning results in more efficient
learning of complex tasks. Babes et al. [16] presented a
technique they called “social reward shaping” that initialises
the Q-function of a Q-learning agent [17] with values de-
rived from an analysis of a mutually beneficial subgame
perfect equilibrium of the IPD. By doing so, they effectively
encouraged the agents to converge more quickly to mutual
cooperation; this was achieved because the initialisationof
the Q-function has been shown to be equivalent to adding
shaping rewards during the learning process [18].

Agents that rely only on pre-designed reward functions in
order to be trained might not truly be called adaptive and
autonomous, because they can only cope with environment
types to which these functions apply. Different approaches
addressing this issue do exist (e.g., [19], [20]). Snel and

Hayes [21] investigated the evolution of valence systems (i.e.,
systems that evaluate positive and negative nature of events)
in an environment largely based on Ackley and Littman’s
artificial life world [19]. They compared the performance of
motivational systems that are based on internal drive levels
versus systems that are based purely on external sensory
input and showed that the performance of the former is
significantly better than the performance of the latter. In a
recent work, Singh et al. [22] introduced a framework for
reward that complements existing RL theory by placing it in
an evolutionary context. They demonstrated the emergence of
reward functions which capture regularities across environ-
ments, as well as the emergence of reward function properties
that do not directly reflect the fitness function.

In the case of the IPD, there have been some studies that
examined the impact of varying the payoff values. Johnson
et al. [23] investigated the reason why the PD has hardly
been found in nature. They argued that the assumption of
a fixed payoff matrix for each player is not realistic due
to variations between individuals on the payoff matrix. They
examined the effect of: i) adding normally distributed random
errors to the payoff values and ii) the spacing between
payoffs. They showed that frequent violations of the payoff
structure occur when the interval between payoffs is low.
Chong and Yao [24] introduced a co-evolutionary frame-
work where each strategy has its own self-adaptive payoff
matrix. The adaptation of each payoff matrix is done by an
update rule that provides a form of reinforcement feedback
between strategy behaviours and payoff values. By relaxing
the restriction of a fixed and symmetric payoff matrix, they
showed how different update rules affected the payoff values
and subsequently the levels of cooperation in the population.
Rezaei and Kirley [25] investigated cooperation in the spatial
PD game. They provided each agent with its own payoff
matrix which was affected by attributes such as the agent’s
age and experience level. They showed that time-varying
non-symmetric payoff values promote cooperation in this
version of the game.

III. M ETHODOLOGY

As we mentioned in the Introduction, the purpose of
this work is to evolve the payoff values of the IPD (i.e.,
T , R, P , S), in order to find more appropriate rewards
for the agents, which would motivate them to cooperate.
A preliminary investigation was performed with the payoff
values shown in Table I, and 2 Q-agents usingε-greedy
exploration (ε = 0.1) [26], while the game simulation
ran for 60000 rounds and 30 trials. The results showed
that the agents do not engage in mutual cooperation. The
following sections describe the MARL simulation, a method
that generates an initial population of valid solutions forthe
IPD, two mutation operators that alter the individuals but
do not change their validity, and the evolutionary algorithm
used.



A. Multiagent Reinforcement Learning

The environment is set to be the IPD and the agents
implement the Q-learning algorithm. The step size parameter,
α, as well as the discount factor,γ, are empirically set to 0.9.
We use lookup tables and not function approximators (such
as neural networks) to represent the value function, as our
previous work showed that lookup tables yield better results
in these settings [9], [10]. This might be because the state-
action space is simple, so there is no need to generalise from
previously experienced states to unseen ones. At every round
each agent chooses either to Cooperate (C) or Defect (D),
and is provided with incomplete information. In particular,
each agent receives only the state of the environment, i.e.,
the actions of both itself and its opponent in the previous
round, as well as the payoff associated with its action, but not
the payoff associated with the opponent’s action. Both agents
need to learn a policy that maximises their long-term rewards
and the only way to achieve that is by learning to cooperate.
A Boltzmann exploration schedule is utilised, as it gives a
good balance between exploration and exploitation, as wellas
fast convergence. More specifically, an actionai is selected
from states with probability p(ai) given by Equation 1:

p(ai) =
eQ(s,ai)/t

∑

a∈{C,D}

eQ(s,a)/t
(1)

where the temperaturet is given by t = 1 + 10× 0.99n, with
n being the number of games played so far. The constants 1,
10 and 0.99 are chosen empirically. More specifically, 10 and
0.99 are chosen because we want to move from exploration
to exploitation in less than 1000 rounds, while the constant
1 is added to restrict the temperature from falling below
that value1. The number of rounds is set to 1000 and the
percentages of all outcomes (CC, CD, DC, DD) are averaged
over 30 trials.

B. Generating Valid Solutions for the IPD

When generating the initial population, we need to ensure
that all individuals consist of payoff values that fall inside
the rules of the game. If not, then we need to assign a
penalty term on the fitness function in order to be fair
with all individuals. However, by evolving the payoff values
with this approach, the final solutions might still not satisfy
the IPD rules. Moreover, it might be difficult to construct
a penalty function for this purpose. One way to generate
valid individuals is to randomly assign theT , R, P , S
values and reject solutions that are invalid or use a repair
method to ensure that they will satisfy the rules. Another
way is to incrementally construct and repair the values by
utilising domain knowledge (i.e., the rules of the game) at
every step. We use the latter approach and more specifically,
we randomly generate the values of each individual, all

1If we let the temperature fall below 1 and use high reward values (such
as 50) the termQ(s, ai)/t in Equation 1 becomes very large causing
unnecessary difficulties in calculating the exponential.

uniformly distributed within the bounds specified below, in
the following sequence:

1) T ′
∈ (bmin, bmax)

2) S′
∈ (bmin, T ′)

3) P ′
∈ (S′, T ′)

4) R′
∈ (max(P ′, (T ′ + S′)/2), T ′)

where the primed payoff values (T ′, R′, P ′, S′) are the newly
generated values. The lower bound ofR′ is max(P ′, (T ′ +
S′)/2) because we know from the rules of the game that
R′ should be greater than bothP ′ and(T ′ + S′)/2, andP ′

could either be less or greater than(T ′ + S′)/2.
The payoffs need to be generated in this order to ensure

that each individual will satisfy the constraints of the game.
The initial lower bound,bmin, and initial upper bound,
bmax, are the bounds of the values within which the initial
population is generated. We also set some absolute lower
and upper bounds,Bmin = −50 and Bmax = 50, in
order to restrict the search space. The values−50 and 50
are chosen empirically2. In Section IV, we present some
experiments where we vary the bounds[Bmin, Bmax], but
never go beyond [-50,50]. In addition, in some experiments
we set the bounds of the initial population[bmin, bmax)
either to[Bmin, Bmax) (which may change according to the
experiment), or[0, 1). When initialising the values of the
population in the range[Bmin, Bmax) we effectively help
evolution to converge more quickly, since the individuals
span the entire search space and not just one region of it (such
as [0, 1)). The reason why we have chosen to sometimes
initialise the population to the range[0, 1) is to show that
evolution manages to find very good solutions even though
the initial population is not spread in the entire search space.
We also conducted experiments where all individuals in the
population were initialised to the values of Table I and the
results were statistically the same with the results obtained
from any other initialisation we tested, therefore we do not
report them in this paper.

C. Mutation Operators

In order to introduce variation into the population, two
mutation operators are implemented,OP 1 and OP 2. OP 1

changes the magnitude and relative distance between the
payoffs by selecting uniformly distributed values for each
payoff T, R, P and S, within the following bounds:

• T ′
∈ (R, min(2R − S, Bmax))

• R′
∈ (max(P, (T + S)/2), T )

• P ′
∈ (S, R)

• S′
∈ (Bmin, min(P, 2R − T ))

These bounds were calculated from the rules of the game.
For example, when considering the valueT ′, we know from
the ruleR > (T +S)/2 thatT < 2R−S. Since2R−S could
be less or greater than the upper bound of the search space,
Bmax, the upper bound ofT ′ should bemin(2R−S, Bmax).

2Values forBmax greater than 50 cause the termQ(s, ai)/t in Equa-
tion 1 to become very large causing unnecessary difficultiesin calculating
the exponential.



In contrast withOP 1, OP 2 keeps the magnitude and rela-
tive distance between the payoffs the same, but it effectively
shifts them as follows. A random value is generated from the
normal distributionN(0, 1) and is added on all the payoff
values. If the new payoff values go out of bounds (i.e.,
S′ < Bmin or T ′ > Bmax) this is repeated. It is important
to note that if the parent payoff values satisfy the rules of
the game, this shifting operator generates a valid offspring
solution.

D. Evolving payoff values for the IPD

When deciding which fitness function to use, we need to
base our decision on a function that is more informative
in terms of our goal, which is the fast convergence to
the cooperative outcome (CC). We could design our fitness
function to be the accumulated payoff of the system (i.e., the
sum of the accumulated payoffs of the two agents), since in
the IPD the CC outcome results in the highest payoff of the
system. However, if we wanted to compare the performance
of the system when using payoff matrices that have only
negative values, as opposed to when using payoff matrices
that have only positive values, this fitness function becomes
problematic. The reason is that when using negative payoff
values, the fitness value will be negative, whereas when using
positive payoff values, the fitness value will be positive.
Therefore we need a fitness function that is independent of
the payoff and dependent only on the outcome of the game.
Such function is the one we are using where the fitness of
an individualfi is calculated as shown in Equation 2:

fi = CCi − CDi − DCi − DDi (2)

wherei is the individual (i.e., payoff matrix) being evaluated,
andCCi, CDi, DCi, andDDi are the average percentages
of the corresponding outcomes at the end of the rounds. By
trying to maximise this function, we effectively find solutions
that maximise the cooperative outcome and minimise all
other outcomes. Therefore, a value of 1 means that the game
simulation consists of only the CC outcome, a value of 0
means that the CC outcome occurs 50% of the time and a
value of -1 means that the CC outcome never occurred in
the simulation. A(µ + λ)-truncation selection is used which
means:

1) µ is the population size andλ = 2 ∗ µ, i.e., for each
parent individual we generate 2 offspring (one from
each mutation operator),

2) we rank all individuals (parentsµ and offspringλ)
based on their fitness and

3) the bestµ individuals from parents and offspring are
selected as the new parents for the next generation.

The number of evolution trials is set to 30, the population
size to 10 and evolution is repeated for 50 generations. The
pseudocode is illustrated in Fig. 1.

IV. RESULTS

A. Evolution of payoffs

In this first experiment we evolve the payoffs in the range
Bmin = −50 and Bmax = 50. The bounds of the values

1 foreach evolution trial do
2 generate and evaluate initial population (P);
3 foreach generationdo
4 foreach Individual i ∈ P do
5 Offspring1[i] = mutationOP1(P[i]);
6 Offspring2[i] = mutationOP2(P[i]);
7 evaluate(Offspring1[i]);
8 evaluate(Offspring2[i]);
9 end

10 P = truncSelection(P, Offspring1, Offspring2);
11 end
12 end

Fig. 1. Pseudocode of the evolutionary algorithm. Each mutation
operator generates one offspring for each member of the population
and the best individuals from both parents and offspring areselected
for the next generation.

of the initial population are set tobmin = 0 and bmax = 1.
Fig. 2 illustrates how the probability of mutual cooperation
(CC) between the agents changes with the game rounds,
when using the initial payoff values and the payoff values
found by evolution. The evolved values are the following:
T = 6.37, R = 3.01, P = −41.04 and S = −44.05.
It is clear that the probability of CC when the evolved
values are used becomes almost equal to 1 at the end of the
simulation, which means that the agents start cooperating
from very early in the game. It is interesting to observe
that while P and S become close toBmin, T and R do
not become close toBmax. This may suggest that when
“winning” (i.e., receiving payoffsT and R), the agents
should accumulate small amounts of reward, whereas when
“losing” (i.e., receiving payoffsP and S), the agents need
to lose much, in order to understand that such behaviour is
detrimental.
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Fig. 2. Probability of mutual cooperation (CC) over time when the Q-
agents learn using the initial payoff values (dotted line) and the evolved
payoff values (solid line). The evolved values make the agents reach mutual
cooperation very early in the game, whereas with the initialvalues the agents
do not learn to cooperate in 1000 rounds, as the probability of CC reaches
only 0.12.



B. Effect of the lower/upper bounds

In the second experiment we investigate how the absolute
lower and upper bounds (i.e., parametersBmin and Bmax)
affect the solutions, with the purpose being to check whether
the magnitude of rewards is important. More specifically,
we check 6 cases for the range[Bmin, Bmax]: [−1, +1],
[−2, +2], [−4, +4], [−8, +8], [−16, +16] and [−32, +32].
The range of the values of the initial population[bmin, bmax)
is set to[0, 1). Table II shows a comparison between these
cases based on the fitness of the best individual found
by evolution. It is clear that as the range of the values
increases so does the fitness. Therefore, by allowing higher
magnitudes of evolved rewards/payoffs the system reaches
mutual cooperation more often. If the range of the initial
population[bmin, bmax) is set to[Bmin, Bmax) in each case,
the results are approximately the same; the only differenceis
that in the latter case, individuals with high fitness are found
earlier, since their values span the entire search space instead
of just one region (i.e.,[0, 1)).

TABLE II

FITNESS VALUES OF THE EVOLVED SOLUTIONS IN THE BOUNDS

SPECIFIED. AS THE RANGE OF THE PAYOFFS INCREASES, SO DOES THE

FITNESS. THE FITNESS OF THE PAYOFF VALUES OFTABLE I IS SHOWN

FOR COMPARISON IN THE FIRST ROW OF THE TABLE

Configuration Fitness
T = 5, R = 3, P = 1, S = 0 -0.769

[−1,+1] 0.045
[−2,+2] 0.478
[−4,+4] 0.557
[−8,+8] 0.618

[−16,+16] 0.775
[−32,+32] 0.910

C. Effect of the reward sign

The third experiment deals with the sign of the rewards.
The bounds of the payoffs are kept in a range equal to 5,
which is the range specified by the values of the initial
case (i.e., the values shown in Table I). More specifically,
we check whether evolved solutions that contain all positive
values, all negative values, or a mixture of both positive and
negative values give better results than the initial case. We
test 8 configurations by varying the bounds[Bmin, Bmax]
from [−6,−1] to [1, 6] incrementing them by 1 in every con-
figuration. The range of the values of the initial population
[bmin, bmax) is set to[Bmin, Bmax) in each configuration.
Table III compares these configurations based on the average
fitness of the best individual found by evolution.

We observe that when the values of the bounds are
negative, the fitness values are greater than 0.5 which means
that mutual cooperation occurred more than 75% of the time.
The fitness values rise slightly further with the introduction
of small positive values; however, as the “penalty” (i.e.,
negative values) is reduced by moving towards bounds with
only positive values, the percentage of mutual cooperation
decreases. The highest fitness and thus percentage of mutual

cooperation is observed for the range[−3, 2] (as shown in
bold).

TABLE III

FITNESS VALUES OF THE EVOLVED SOLUTIONS IN THE BOUNDS

SPECIFIED. HIGHEST FITNESS IS OBSERVED FOR THE RANGE[−3, 2]

(SHOWN IN BOLD). THE FITNESS OF THE PAYOFF VALUES OFTABLE I IS

SHOWN FOR COMPARISON IN THE FIRST ROW OF THE TABLE

Configuration Fitness
T = 5, R = 3, P = 1, S = 0 -0.769

[−6,−1] 0.523
[−5, 0] 0.525

[−4,+1] 0.547
[−3,+2] 0.548
[−2,+3] 0.492
[−1,+4] 0.437
[0,+5] 0.326

[+1,+6] 0.187
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Fig. 3. Evolved payoffs for every range configuration. Boxesindicate
the bounds of the corresponding configuration. The following pattern is
observed: the valuesP and S become close to the lower bound of the
range specified, while the valuesT andR become close to the upper bound
when the range “includes more” negative values, and seem to be moving
away from the upper bound when the range “includes more” positive values.

It is worth noting that for the range[0, +5], in contrast with
the payoff values of Table I which have the same range, the
evolved payoffs have a positive fitness. The reason why this
happens is illustrated more clearly in Fig. 3. The values of
the evolved matrices from all configurations appear to follow
a pattern. TheP and S values become close together and
closer to the lower bound, while the valuesT andR become
close together, but closer to the upper bound especially when
the values of the bounds are negative. As the values of the
bounds increase,T andR seem to be moving away from the
upper bound.

D. Effect of the population size

In this experiment, the effect of the population size (p) on
the quality of solutions is examined. In particular, population
sizes of 1, 2, 4, 6, 8, 10 and 12 are investigated. The bounds
of the search spaceBmin and Bmax are set to -50 and
50 respectively, as described above, and the range of the
initial population, [bmin, bmax), is set to [0,1). The results



are depicted in Fig. 4. In Fig. 4 the value of the fitness is
written next to the bars that show the payoff values.
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Fig. 4. Evolved payoff values with their fitness (written next to the bars) for
different population sizes. Larger population sizes result in better solutions,
while good solutions are also found with small population sizes. There is
no significant improvement in the fitness with population sizes above 10.
While the valuesP andS are closer to the lower bound, the valuesT and
R are less than 10.
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Fig. 5. Fitness values of the best solution found for different population
sizes (p) over the generations. Good solutions are obtainedin less than 10
generations for all populations.

We observe that as the population size increases, evolution
finds better solutions; however, forp = 10 and p = 12
the fitness is approximately the same suggesting that there
is no significant improvement with population sizes above
10. Good solutions are found even when there is only 1
individual in the population. This shows that the problem
of evolving the payoff values is solved easily. We observe
that in fitter solutions, the valuesT andR are closer together,
while the P andS values are closer together and closer to
the lower bound. This is better illustrated when comparing
the solution found whenp = 1, with the solution found when
p = 12. It is interesting to note that for all population sizes,
while the valuesP andS are closer to the lower bound, the
valuesT andR are less than 10. The effect of the population
size is also depicted in Fig. 5, where the fitness of the best

individual for different population sizes, is shown over the
generations.

E. Effect of the mutation operators

Finally, we examine the role of the mutation operators
throughout the evolutionary process and how they affect
the solutions. In order to do so, we mark each offspring,
whenever it is generated, by a value that indicates which
mutation operator created it (OP1 or OP2). After ranking
the population in order to select the best elite individuals, we
count how many individuals were generated by each mutation
operator. At the beginning of each generation, this mark is
reset for every member of the population. These counters
are averaged over 30 evolution trials, as in all other results.
Fig. 6 shows the average number of mutated solutions over
the generations with each mutation operator. We notice that
OP1 is mostly used in the beginning, thus, we could say that
it mostly contributes to the exploration of the search space,
while OP2 is used both in the beginning and afterwards, thus
explores and fine-tunes the solutions. Towards the end of
evolution, the average number of mutated individuals is less
than 1, since all members of the population have converged
and the quality of solutions cannot be improved any further.
It is worth noting that these results are consistent with all
population sizes.
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Fig. 6. Average number of mutated individuals over the generations with
each mutation operator (OP1 and OP2). OP1 (solid line) is activated more in
the beginning of evolution, therefore it mostly contributes to the exploration
of the search space, while OP2 (dotted line) is activated both in the beginning
and afterwards, thus explores and fine-tunes the solutions.Towards the end
of evolution, the average number of mutated individuals is less than 1, since
all members of the population have converged and the qualityof solutions
can not be improved any further.

V. D ISCUSSION ANDCONCLUSIONS

In this paper, we used an evolutionary algorithm to find
more appropriate payoffs for agents trained with Q-learning
in the IPD. It is important to note that Q-learning is an
algorithm proposed for single-agent environments. While in
the field of MARL a lot of algorithms were developed that
fulfill certain criteria (see [27] for a comprehensive survey of
MARL), in this paper we show that even “naive” Q-learners
are able to behave efficiently in multiagent settings when
their reward function is evolved.



Our approach does not evolve the payoff values while
the agents learn; instead, as biological evolution hard-wires
primary rewards in animals due to their reproductive suc-
cess, our algorithm searches for fixed internal rewards for
the agents without changing their goal, since the evolved
solutions have a valid payoff structure. While the distinction
between internal rewards and external sensations is consid-
ered ([20], [22]), we ignore the mapping between them for
simplicity, and leaving it for future work.

We performed an exhaustive analysis by investigating the
effect of: i) the lower and upper bounds of the search space of
the payoff values, ii) the reward sign, iii) the population size,
and iv) the mutation operators used. The evolved solutions
suggest that mutual cooperation between the RL agents is
enhanced when: i)T andR are positive, whereasP andS
are negative, ii)T and R are close together, whileP and
S are close together as well, and iii) the magnitude of the
negative payoffsP and S is high, whereas the magnitude
of the positive payoffsT andR is low. These results show
that evolution finds a way to create agents that are motivated
to cooperate, since it effectively creates a sense of reward
and penalty, thereby “pointing at” the goal (i.e., mutual
cooperation).

The evolved payoffs could also suggest that when an agent
is “losing”, the penalty (i.e., negative reinforcement) should
be much higher than the reward (i.e., positive reinforcement)
it accumulates when it is “winning”. This might indicate a
similarity between this method and the WoLF (Win or Learn
Fast) principle [28] in MARL, where a smaller learning rate
is used when the agent is winning and a much higher one is
used when the agent is losing. Certainly, one cannot compare
these two approaches, since algorithms that use the WoLF
principle work online and very differently than the method
we presented. Our goal was not to design another MARL
algorithm, but to investigate the impact of evolving the payoff
values in the IPD.

It has to be noted that this method works for the config-
urations presented in this paper. For example, it is unclear
how it will perform for different learning agents. Moreover,
it was specifically designed for the IPD. How can we adapt
it for every 2-player, 2-action game, or for games with an
arbitrary number of players and actions? What happens when
the game has continuous payoffs or continuous actions? How
can it be generalised for stochastic games or for real-world
environments? Is there a way to adaptively transform the
reward functions of the agents, in order to switch between
different sets of collective behaviours? These questions open
a broad avenue of future directions, which could ultimately
lead to truly adaptive and autonomous multiagent systems.
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