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Abstract—In this paper, we investigate the importance of evolved payoff values represent reinforcement signalgegen
rewards in Multiagent Reinforcement Learning in the contex  ated inside the agent and not external/environmental §timu

of the lterated Prisoners Dilemma. We use an evolutionary  the mapping between external and internal reinforcements
algorithm to evolve valid payoff structures with the aim of . . . o
is ignored for simplicity.

encouraging mutual cooperation. An exhaustive analysis is . . . )
performed by investigating the effect of: i) the lower and ugper In its standard one-shot version, the Prisoner’s Dilemma
bounds of the search space of the payoff values, ii) the rewdr (PD) [2] is a game summarized by the payoff matrix of
sign, iii) the population size, and iv) the mutation operates  Table |. There are two players, Row and Column. Each
used. Our results indicate that valid structures that encouage

cooperation can quickly be obtained, while their analysis lsows TABLE |

that: i) they should contain a mixture of positive and negatve
values and ii) the magnitude of the positive values should be
much smaller than the magnitude of the negative values.

PAYOFF MATRIX OF THE PRISONER SDILEMMA GAME WITH THE MOST
COMMONLY STUDIED PAYOFF VALUES. PAYOFF FOR THEROW PLAYER IS
SHOWN FIRST RIS THE “REWARD” FOR MUTUAL COOPERATION P IS

|. INTRODUCTION THE “PUNISHMENT’ FOR MUTUAL DEFECTION. T IS THE " TEMPTATION"
Multiagent Reinforcement Learning (MARL) research has FoRr UNILATERAL DEFECTION AND SIS THE “SUCKER S” PAYOFF FOR
recently attracted a serious amount of scientific work. TheuNILATERAL COOPERATION. THE ONLY CONDITION IMPOSED TO THE

main problem of MARL is that the presence of multiple PAYOFFS IS THAT THEY SHOULD BE ORDERED SUCH THAT
learning agents creates a non-stationary environmeng-the T>R>P>S.
fore, for a system to perform well, the agents might need to Cooperate (C) Defect (D)

base their decisions on a history of joint past actions and on Cooperate (C)] R(=3),R(=3) | S(=0),T(=5)
how they would like to influence future ones. In MARL there Defect ©) | T(=5),5(=0) | PED, P(=1)
could be different kinds of situations: fully competitive o

adversarial (which could be modelled with zero-sum game layer has the choice of either to “Cooperate”(C) or “Defect
fu_IIy cooperative or coordinaftive (which could l_ae modelleqpy. For each pair of choices, the payoffs are displayed in
with team games), and a mixture of both (which could bgne respective cell of the payoff matrix of Table I. These
modelled with general-sum games). As different issueari§a| es were used in various IPD tournaments (see [3] and
in each situation, researchers have developed algorithiths W4]) and to the best of our knowledge are the ones most
a variety of research goals. commonly studied. In game theoretical terms, where rationa
The current study lies in the “prescriptive non-coopegitiv players are assumed, DD is the only Nash equilibrium
agenda [1], i.e., we are interested in effective technid@s ,ytcome [5] (i.e., a state in which no player can benefit by
result in high rewards for the agents. More specifically, Wgnanging his/her strategy while the other players keepshei
investigate cooperation between self-seeking reward tage@nchanged), whereas the cooperative (CC) outcome satisfies
in a non-coope.rative setti.ng. This situation_is modellethwi Pareto optimality [6] (i.e., a state in which it is impossibl
the lterated Prisoner's Dilemma (IPD) which is a generaly increase the gains of one player without increasing the
sum game. Although the cooperative outcome is a valigsses of other players). The “dilemma” faced by the players
equilibrium of the IPD, our study does not aim to assesg any valid payoff structure is that, whatever the other
the strength of the learning algorithms to attain equiitdf  player does, each one of them is better off by defecting than
the game or best responses to any given strategy; instead, W@ perating. The outcome obtained when both players defect
focus on mutual cooperation and investigate whether it @n B o\wever is worse for each one of them than the outcome they
achieved by simple reinforcement learning (RL) agents angoyid have obtained if both had cooperated. In the IPD, an
enhanced by evolving its payoff matrix. The rationale béhingytra rule R > (T + S)/2 guarantees that the players are
this is that we would like to motivate the agents into coopefygt collectively better off by having each player alternate

ation by making them perceive the payoff values differenthhetween C and D, thus keeping the CC outcome Pareto
i.e., as rewards and penalties. Therefore in this paper, tggtimal.

This work was supported by the University of Cyprus under raprhal As pomted outin [7] perfectly pred|ct|ng the environment
Research Project grant. is not enough to guarantee good performance”, because the
Vassilis Vassiliades and Chris Christodoulou are with thep@t- performance depends pamy on properties of the envirohmen

ment of Computer Science, University of Cyprus, 75 Kallgms Av- . .
enue, P.O. Box 20537, 1678 Nicosia, Cyprus (e-mafvassiliades, In our case, we believe that the property of the environment
cchris @cs.ucy.ac.cy). which plays a significant role in the CC outcome is the




reward function, since it specifies the type and strength défayes [21] investigated the evolution of valence systemas, (i
the reinforcement the agents receive. Therefore, we intred systems that evaluate positive and negative nature of €vent
a method that evolves the payoff values of the IPD whilin an environment largely based on Ackley and Littman’s
satisfying its constraints, in order for simple RL algonith artificial life world [19]. They compared the performance of
to rapidly reach the CC outcome. motivational systems that are based on internal drive $evel
The remainder of the paper is organised as follows. In Segersus systems that are based purely on external sensory

tion 1l, we present some related work. Section Il describemput and showed that the performance of the former is
our methodology, while the results are given in Section IVsignificantly better than the performance of the latter. In a
Finally, in Section V, we briefly discuss some issues relatedcent work, Singh et al. [22] introduced a framework for
to this work and summarise the conclusions of this paper.reward that complements existing RL theory by placing it in
an evolutionary context. They demonstrated the emergence o
reward functions which capture regularities across enviro

Sandholm and Crites [8] investigated MARL in the IPDyents as well as the emergence of reward function progertie
by representing the state-action estimates (Q-functiwifie  ha¢ go not directly reflect the fitness function.

lookup tables and simple recurrent neural networks and In the case of the IPD, there have been some studies that

showed that lookup tables lead to better results. However, t . : .
ayoff values they used were a scaled down version of tr(]axamlned the |mpact of varying the payoff values. Johnson
pay al. [23] investigated the reason why the PD has hardly

commonly studied values indicated in Table I. They repor, een found in nature. They argued that the assumption of

results where CC occurred 50% of the time in the final roun as fixed pavoff matrix for each olaver is not realistic due
of the game, after running the simulation for 62.5 million pay play

rounds. Our previous work with MARL in the IPD [9], [10] to var_latlons between .|r_1d|V|dgaIs on the pqyoff matrix. ¥he
b ) . o examined the effect of: i) adding normally distributed rand
showed that it is possible to train spiking neural netwotks t - :
; . . errors to the payoff values and ii) the spacing between
reach mutual cooperation. In this case however, a mixture Q S
" : . ayoffs. They showed that frequent violations of the payoff
both positive and negative payoff values is necessary,@&s . _
; : . " structure occur when the interval between payoffs is low.
learning algorithms used [11], [12] work with positive and . .
. ; . Chong and Yao [24] introduced a co-evolutionary frame-
negative reinforcements extracted from the payoff matnick a . :
. : o work where each strategy has its own self-adaptive payoff
directly applied to the synapses. This mixture was founcetob___ . : L
. - matrix. The adaptation of each payoff matrix is done by an
beneficial for non-spiking neural networks as well as looku

tables deate rule that provides a form of reinforcement feedback

Reward shaping is a technique that introduces imaginabetween strategy behaviours and payoff values. By relaxing

: . . . {¥e restriction of a fixed and symmetric payoff matrix, they
rewards to a reinforcement-learning algorithm, during the .
) o showed how different update rules affected the payoff \&alue
learning process, as an addition to the actual reward from S X
and subsequently the levels of cooperation in the populatio

the environment, with the purpose of helping the agent Ieaﬁl . ; . . L )
. . o ezaei and Kirley [25] investigated cooperation in the ighat
a desirable behaviour more efficiently [13], [14]. Buffet etPD game. TheyyrErO\]/ided ezgch agentpwith s OWN lgzlyoff

al. [.15]. propos.ed a shaping methqdology for automat'c"jll%atrix which was affected by attributes such as the agent’s
designing multiagent systems. Their approach was based on

; L : age and experience level. They showed that time-varying
progressively growing: i) the complexity of the task, sottha . L .
agents would incrementally learn harder and harder taskréon—_symmetnc payoff values promote cooperation in this
N . . version of the game.
and ii) the multiagent system, by cloning agents that were
trained in a simple environment to a more complex one. They
tested their approach on simulated environments where the
agents had to coordinate in order to reach a common goal
and showed that incremental learning results in more effficie
learning of complex tasks. Babes et al. [16] presented aAs we mentioned in the Introduction, the purpose of
technique they called “social reward shaping” that inisie$  this work is to evolve the payoff values of the IPD (i.e.,
the Q-function of a Q-learning agent [17] with values ded’, R, P, S), in order to find more appropriate rewards
rived from an analysis of a mutually beneficial subgaméor the agents, which would motivate them to cooperate.
perfect equilibrium of the IPD. By doing so, they effectivel A preliminary investigation was performed with the payoff
encouraged the agents to converge more quickly to mutualues shown in Table I, and 2 Q-agents usigreedy
cooperation; this was achieved because the initialisadfon exploration (¢ = 0.1) [26], while the game simulation
the Q-function has been shown to be equivalent to addimgn for 60000 rounds and 30 trials. The results showed
shaping rewards during the learning process [18]. that the agents do not engage in mutual cooperation. The
Agents that rely only on pre-designed reward functions ifollowing sections describe the MARL simulation, a method
order to be trained might not truly be called adaptive anthat generates an initial population of valid solutions tfoe
autonomous, because they can only cope with environmdRD, two mutation operators that alter the individuals but
types to which these functions apply. Different approacheto not change their validity, and the evolutionary algarith

addressing this issue do exist (e.g., [19], [20]). Snel andsed.

Il. RELATED WORK

I1l. METHODOLOGY



A. Multiagent Reinforcement Learning uniformly distributed within the bounds specified below, in

The environment is set to be the IPD and the agen[@e following sequence:
implement the Q-learning algorithm. The step size paramete 1) 7" € (bmin; bimaz)
«, as well as the discount factor, are empirically setto 0.9.  2) S" € (bmin, T")
We use lookup tables and not function approximators (such3) P’ € (S',T")
as neural networks) to represent the value function, as our4) R’ € (max(P’,(T" +5")/2),T")
previous work showed that lookup tables yield better rgsultvhere the primed payoff value®(, R’, P’, S’) are the newly
in these settings [9], [10]. This might be because the statgenerated values. The lower bound Bf is max(P’, (T +
action space is simple, so there is no need to generalise frg#f) /2) because we know from the rules of the game that
previously experienced states to unseen ones. At everylrouR’ should be greater than bof¥ and (7’ + S’)/2, and P’
each agent chooses either to Cooperate (C) or Defect (Rpuld either be less or greater théF + S’)/2.
and is provided with incomplete information. In particular The payoffs need to be generated in this order to ensure
each agent receives only the state of the environment, i.éhat each individual will satisfy the constraints of the gam
the actions of both itself and its opponent in the previoushe initial lower bound,b,,;,, and initial upper bound,
round, as well as the payoff associated with its action, bt np,,, .., are the bounds of the values within which the initial
the payoff associated with the opponent’s action. Both &gerpopulation is generated. We also set some absolute lower
need to learn a policy that maximises their long-term rewarcaind upper boundsB,.;, = —50 and B,,.. = 50, in
and the only way to achieve that is by learning to cooperaterder to restrict the search space. The valué$ and 50
A Boltzmann exploration schedule is utilised, as it gives are chosen empiricafly In Section IV, we present some
good balance between exploration and exploitation, asasell experiments where we vary the bounds,,.;,., Bmaz], but
fast convergence. More specifically, an actianis selected never go beyond [-50,50]. In addition, in some experiments
from states with probability p(a;) given by Equation 1: we set the bounds of the initial populatid,,iy, bmaz)

(Qls,a0)/t either to[B,.in, Bmaz) (Which may change according to the

pla;) = —————— (1) experiment), or[0,1). When initialising the values of the
Do et population in the rangéB,in, Bmaz) We effectively help

ae{C,D} evolution to converge more quickly, since the individuals

span the entire search space and not just one region of it (suc

where the temperatutas given by t = 1 + 10x 0.99", with i
n being the number of games played so far. The constants > .[O’.l))‘ The reason why we have chqsen to sometimes
: |8it|allse the population to the rangé, 1) is to show that

10 and 0.99 are chosen empirically. More specifically, 10 an . ) .
.evolution manages to find very good solutions even though
0.99 are chosen because we want to move from exploratign

to exploitation in less than 1000 rounds, while the consta € initial population is not spread in the entire searcttepa

1 is added to restrict the temperature from falling below e also conducted experiments where all individuals in the
that valud The number of rounds is set to 1000 and thgopulation were initialised to the values of Table | and the

percentages of all outcomes (CC, CD, DC, DD) are averag r%SUItS were sta}n_s'chlly.the same with the results obtiin
over 30 trials. rom any other initialisation we tested, therefore we do not

report them in this paper.
B. Generating Valid Solutions for the IPD C. Mutation Operators
When generating the initial population, we need to ensure

that all individuals consist of payoff values that fall idsi mutation operators are implemente@dP; and OP,. OP;

the rules of the game. If not, then we need to assign 4 . i .
i o .changes the magnitude and relative distance between the
penalty term on the fitness function in order to be fair

with all individuals. However, by evolving the payoff vakie payoffs by selecting un_ifo_rmly distribgted values. for each

. : ; . . : . payoff T, R, P and S, within the following bounds:
with this approach, the final solutions might still not sfgtis
the IPD rules. Moreover, it might be difficult to construct * 1’ € (R, min(2R — S, Byaz))
a penalty function for this purpose. One way to generate * £’ € (max(P, (T'+5)/2),T)
valid individuals is to randomly assign th&, R, P, S « P'e(5R)
values and reject solutions that are invalid or use a repair® S" € (Bmin, min(P, 2R —T))
method to ensure that they will satisfy the rules. Another These bounds were calculated from the rules of the game.
way is to incrementally construct and repair the values blfor example, when considering the vallie we know from
utilising domain knowledge (i.e., the rules of the game) ahe ruleR > (T'+S)/2 thatT < 2R—S. Since2R— .S could
every step. We use the latter approach and more specificaldg less or greater than the upper bound of the search space,
we randomly generate the values of each individual, aB,,.., the upper bound df” should bemin(2R— S, Byaz)-

In order to introduce variation into the population, two

1If we let the temperature fall below 1 and use high reward esl(such 2Values for Bmqo greater than 50 cause the te(s, a;)/t in Equa-
as 50) the termQ(s,a;)/t in Equation 1 becomes very large causingtion 1 to become very large causing unnecessary difficultiesalculating
unnecessary difficulties in calculating the exponential. the exponential.



In contrast withO P, OP, keeps the magnitude and rela-1 foreach evolution trial do
tive distance between the payoffs the same, but it effdgtive2 generate and evaluate initial population (P);
shifts them as follows. A random value is generated from the | foreach generationdo

normal distributionN(0,1) and is added on all the payoff 4 foreach Individual i € P do

values. If the new payoff values go out of bounds (i.e.5 Offspringl[i] = mutationOP1(P[i]);

S’ < Bpin Or T > Bpa.) this is repeated. It is important 6 Offspring2[i] = mutationOP2(P[i]);

to note that if the parent payoff values satisfy the rules of evaluate(Offspring1[i]);

the game, this shifting operator generates a valid offgpring evaluate(Offspring2[i]);

solution. 9 end

D. Evolving payoff values for the IPD 1(1) endP = truncSelection(P, Offspringl, Offspring2);

When deciding which fitness function to use, we need {9 onq
base our decision on a function that is more informative
in terms of our goaly which is the fast convergence to Fig. 1. Pseudocode of the _evolutionary algorithm. Each t'pmna
the cooperative outcome (CC). We could design our fitness SPq o Joneraies o ?rgiﬁ’rgn(ﬂhf(gaf;ﬁz ?ne(im(?f?srp(:i];];hglm
function to be the accumulated payoff of the system (i.@, th for the next generation.
sum of the accumulated payoffs of the two agents), since in
the IPD the CC outcome results in the highest payoff of the
system. However, if we wanted to compare the performance
of the system when using payoff matrices that have onl§f the initial population are set t0,,;, = 0 and b4, = 1.
negative values, as opposed to when using payoff matricelg. 2 illustrates how the probability of mutual cooperatio
that have only positive values, this fitness function becomdCC) between the agents changes with the game rounds,
problematic. The reason is that when using negative payoihien using the initial payoff values and the payoff values
values, the fitness value will be negative, whereas whemusifound by evolution. The evolved values are the following:
positive payoff values, the fitness value will be positivel = 6.37, R = 3.01, P = —41.04 and S = —44.05.
Therefore we need a fitness function that is independent bfis clear that the probability of CC when the evolved
the payoff and dependent only on the outcome of the gam¢alues are used becomes almost equal to 1 at the end of the
Such function is the one we are using where the fitness 8fmulation, which means that the agents start cooperating
an individual f; is calculated as shown in Equation 2: from very early in the game. It is interesting to observe
e that while P and S become close t@3,,;,, T and R do
fi=CC;=CD; = DC; = DD; (@) not become close td3,,.,. This may suggest that when
wherei is the individual (i.e., payoff matrix) being evaluated,“winning” (i.e., receiving payoffsT and R), the agents
andCC,;, CD;, DC;, andDD; are the average percentageshould accumulate small amounts of reward, whereas when
of the corresponding outcomes at the end of the rounds. Bipsing” (i.e., receiving payoffsP and S), the agents need
trying to maximise this function, we effectively find solois  to lose much, in order to understand that such behaviour is
that maximise the cooperative outcome and minimise afletrimental.
other outcomes. Therefore, a value of 1 means that the game
simulation consists of only the CC outcome, a value of 0 1
means that the CC outcome occurs 50% of the time and a
value of -1 means that the CC outcome never occurred in gg|
the simulation. A(x + A)-truncation selection is used which §

means: S 06 Initial Values
1) u is the population size andl = 2 x , i.e., for each E ved Val
parent individual we generate 2 offspring (one fromﬁ 0.4 Fvolved Values
each mutation operator), o
2) we rank all individuals (parents and offspring\) & 02l

based on their fitness and I e
3) the bestu individuals from parents and offspring are 0 ‘ ‘ ‘ ‘
selected as the new parents for the next generation. 0 200 400 600 800 1,000
The number of evolution trials is set to 30, the population Rounds Played
size to 10 and evolution is repeated for 50 generations. Th’:?g. 2

Probability of mutual cooperation (CC) over time whine Q-

pseudocode is illustrated in Fig. 1. agents learn using the initial payoff valuedofted ling and the evolved
payoff values golid line). The evolved values make the agents reach mutual
IV. RESULTS cooperation very early in the game, whereas with the initidlies the agents
A. Evolution of payoffs do not learn to cooperate in 1000 rounds, as the probabili@®reaches
' only 0.12.

In this first experiment we evolve the payoffs in the range
Bin = —50 and B,,,.. = 50. The bounds of the values



B. Effect of the lower/upper bounds cooperation is observed for the range3, 2] (as shown in

In the second experiment we investigate how the absolugo!d)-
lower and upper bounds (i.e., paramet&s;, and By,,,) TABLE IlI
affect the solutions, with the purpose being to check whethe £ 1yess VALUES OF THE EVOLVED SOLUTIONS IN THE BOUNDS
the magnitude of rewards is important. More specifically, SPECIFIED HIGHEST FITNESS IS OBSERVED FOR THE RANGE-3, 2]

we check 6 cases for the rangB,.in, Bmaz|: [—1,+1], (SHOWN IN BOLD). THE FITNESS OF THE PAYOFF VALUES OAABLE | IS
[_27 +2]' [_4’ +4]’ [_8’ +8]’ [_ 16’ +16] and_ [_327 +32] SHOWN FOR COMPARISON IN THE FIRST ROW OF THE TABLE
The range of the values of the initial populati®p, .., bmaz)
is set to[0,1). Table Il shows a comparison between these Configuration Fitness
cases based on the fitness of the best individual found T'=5R=3P=15=0] -0.769
; . [—6,—1] 0.523
by evolution. It is clear that as the range of the values [=5,0] 0.525
increases so does the fitness. Therefore, by allowing higher [—4,+1] 0.547
magnitudes of evolved rewards/payoffs the system reaches ngg 8-%‘2
mutual cooperation more often. If the range of the initial (—1,+4] 0.437
population[b, iy, bmaz ) 1S Set t0[Bin, Bmas) iN €ach case, [0, +5] 0.326
the results are approximately the same; the only differésice [+1, +6] 0.187
that in the latter case, individuals with high fitness arenfibu
earlier, since their values span the entire search spaahs
of just one region (i.e.[0, 1)). 6
5t R B
TABLE Il 4 s =
FITNESS VALUES OF THE EVOLVED SOLUTIONS IN THE BOUNDS 1) 3 r E3-- T - -8
SPECIFIED AS THE RANGE OF THE PAYOFFS INCREASESO DOES THE g 2 ¢ AP B -4 A
FITNESS THE FITNESS OF THE PAYOFF VALUES OAABLE | IS SHOWN § (1) : A
FOR COMPARISON IN THE FIRST ROW OF THE TABLE 5, < Lt
> B -
T 2 a5
Configuration Fitness o 5 =
T=5R=3P=158=0 | -0.769 a4l |
(—1,+1] 0.045 P
[—2,+2] 0.478 s LE
—4,+4 0.557
%_8&8} 0.618 [-6-1] [50] [41 [32 [23 [14 [05 [L6]
[~16,+16] 0.775 Bounds of the payoff values
(32, +32] 0.910 pay

Fig. 3. Evolved payoffs for every range configuration. Boxedicate
the bounds of the corresponding configuration. The follgwpattern is
X observed: the value$ and S become close to the lower bound of the
C. Effect of the reward sign range specified, while the valugsand R become close to the upper bound

. . . . hen the range “includes more” negative values, and seene tmdwving
The third experiment deals with th_e sign of the I’e\’vardé/a;\/Nay from the upper bound when the range “includes more'tigesialues.
The bounds of the payoffs are kept in a range equal to 5,

which is the range specified by the values of the initial |tjs worth noting that for the range, +5, in contrast with
case (i.e., the values shown in Table I). More specificallypg payoff values of Table | which have the same range, the
we check whether evolved solutions that contain all pasitiveyglyved payoffs have a positive fitness. The reason why this
values, all negative values, or a mixture of both positivé anhappens is illustrated more clearly in Fig. 3. The values of
negative values give better results than the initial case. Whe evolved matrices from all configurations appear to follo
test 8 configurations by varying the boun@3,.;n, Brnaz|  a pattern. TheP and S values become close together and
from [—6, —1] to [1, 6] incrementing them by 1 in every con- cjoser to the lower bound, while the valuBsand R become
figuration. The range of the values. of the initiall popu_latioruose together, but closer to the upper bound especiallyywhe
[brmin; bmaz) iS S€t 10[Bmin, Bmaa) in €ach configuration. ihe values of the bounds are negative. As the values of the

Table Ill compares these configurations based on the averagfnds increasd; and R seem to be moving away from the
fitness of the best individual found by evolution. upper bound.

We observe that when the values of the bounds are ) ]
negative, the fitness values are greater than 0.5 which med#s Effect of the population size
that mutual cooperation occurred more than 75% of the time. In this experiment, the effect of the population size (p) on
The fitness values rise slightly further with the introdanti the quality of solutions is examined. In particular, popiola
of small positive values; however, as the “penalty” (i.e.sizes of 1, 2, 4, 6, 8, 10 and 12 are investigated. The bounds
negative values) is reduced by moving towards bounds withf the search spacé#,,;, and B,,,, are set to -50 and
only positive values, the percentage of mutual cooperatidsO respectively, as described above, and the range of the
decreases. The highest fitness and thus percentage of mutogilal population, [b,,in, bimaz), IS Set to [0,1). The results



are depicted in Fig. 4. In Fig. 4 the value of the fithness
written next to the bars that show the payoff values.

Population Size

-20 -10 0 20 30

Payoff Values

Fig. 4. Evolved payoff values with their fithess (written hexthe bars) for
different population sizes. Larger population sizes tesubetter solutions,
while good solutions are also found with small populatioresi There is
no significant improvement in the fitness with populationesiabove 10.
While the valuesP and S are closer to the lower bound, the valliEsand
R are less than 10.

Fitness

| | |
20 30 40
Generation

50

Fig. 5. Fitness values of the best solution found for diffiérpopulation
sizes (p) over the generations. Good solutions are obtamésks than 10
generations for all populations.

imndividual for different population sizes, is shown oveeth
generations.

E. Effect of the mutation operators

Finally, we examine the role of the mutation operators
throughout the evolutionary process and how they affect
the solutions. In order to do so, we mark each offspring,
whenever it is generated, by a value that indicates which
mutation operator created it (OP1 or OP2). After ranking
the population in order to select the best elite individpais
count how many individuals were generated by each mutation
operator. At the beginning of each generation, this mark is
reset for every member of the population. These counters
are averaged over 30 evolution trials, as in all other result
Fig. 6 shows the average number of mutated solutions over
the generations with each mutation operator. We notice that
OP1 is mostly used in the beginning, thus, we could say that
it mostly contributes to the exploration of the search space
while OP2 is used both in the beginning and afterwards, thus
explores and fine-tunes the solutions. Towards the end of
evolution, the average number of mutated individuals is les
than 1, since all members of the population have converged
and the quality of solutions cannot be improved any further.
It is worth noting that these results are consistent with all
population sizes.

Number of mutated individuals

] | |
0 10 20 30 40 50
Generation

Fig. 6. Average number of mutated individuals over the gatiams with
each mutation operator (OP1 and OP2). Osdid line) is activated more in
the beginning of evolution, therefore it mostly contrikaite the exploration
.of the search space, while ORffted ling is activated both in the beginning

We observe that as the population size increases, evolutighy afterwards, thus explores and fine-tunes the solutiveards the end

finds better solutions; however, fgr = 10 andp = 12

the fithess is approximately the same suggesting that th
is no significant improvement with population sizes above

of evolution, the average number of mutated individualess Ithan 1, since

é}lbmembers of the population have converged and the quafigolutions

can not be improved any further.

10. Good solutions are found even when there is only 1

individual in the population. This shows that the problem

V. DiscussiON ANDCONCLUSIONS

of evolving the payoff values is solved easily. We observe In this paper, we used an evolutionary algorithm to find

that in fitter solutions, the valuéS and R are closer together,

more appropriate payoffs for agents trained with Q-leagnin

while the P and S values are closer together and closer téin the IPD. It is important to note that Q-learning is an
the lower bound. This is better illustrated when comparinglgorithm proposed for single-agent environments. While i

the solution found whep = 1, with the solution found when

the field of MARL a lot of algorithms were developed that

p = 12. It is interesting to note that for all population sizes{ulfill certain criteria (see [27] for a comprehensive syroé
while the valuesP and .S are closer to the lower bound, theMARL), in this paper we show that even “naive” Q-learners
valuesT andR are less than 10. The effect of the populatiorare able to behave efficiently in multiagent settings when
size is also depicted in Fig. 5, where the fithess of the besteir reward function is evolved.



Our approach does not evolve the payoff values while3]
the agents learn; instead, as biological evolution hameswvi
primary rewards in animals due to their reproductive suc!t
cess, our algorithm searches for fixed internal rewards for
the agents without changing their goal, since the evolvedf]
solutions have a valid payoff structure. While the disfioict
between internal rewards and external sensations is consig
ered ([20], [22]), we ignore the mapping between them for
simplicity, and leaving it for future work. (7]

We performed an exhaustive analysis by investigating the
effect of: i) the lower and upper bounds of the search space d$]
the payoff values, ii) the reward sign, iii) the populatiares
and iv) the mutation operators used. The evolved solutiong,
suggest that mutual cooperation between the RL agents Is
enhanced when: i’ and R are positive, wherea® and S
are negative, iyl and R are close together, whil& and
S are close together as well, and iii) the magnitude of the
negative payoffsP and .S is high, whereas the magnitude
of the positive payoffsl” and R is low. These results show
that evolution finds a way to create agents that are motivated
to cooperate, since it effectively creates a sense of rewalfd!
and penalty, thereby “pointing at” the goal (i.e., mutua
cooperation). [12]

The evolved payoffs could also suggest that when an agent
is “losing”, the penalty (i.e., negative reinforcementpsid (13]
be much higher than the reward (i.e., positive reinforcetinen
it accumulates when it is “winning”. This might indicate a
similarity between this method and the WoLF (Win or Lear 14]
Fast) principle [28] in MARL, where a smaller learning rate
is used when the agent is winning and a much higher one is
used when the agent is losing. Certainly, one cannot compiigl
these two approaches, since algorithms that use the WoLF
principle work online and very differently than the method
we presented. Our goal was not to design another MARIL]
algorithm, but to investigate the impact of evolving the qify
values in the IPD.

It has to be noted that this method works for the config-
urations presented in this paper. For example, it is unclg[olr
how it will perform for different learning agents. Moreoyer [18]
it was specifically designed for the IPD. How can we adapt
it for every 2-player, 2-action game, or for games with ang)
arbitrary number of players and actions? What happens when
the game has continuous payoffs or continuous actions? How
can it be generalised for stochastic games or for real-wor 90]
environments? Is there a way to adaptively transform the
reward functions of the agents, in order to switch between
different sets of collective behaviours? These questigeno
a broad avenue of future directions, which could ultimately
lead to truly adaptive and autonomous multiagent systems.

[10]
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