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Abstract. This paper investigates Multiagent Reinforcement Learning
(MARL) in a general-sum game where the payoffs’ structure is such
that the agents are required to exploit each other in a way that benefits
all agents. The contradictory nature of these games makes their study
in multiagent systems quite challenging. In particular, we investigate
MARL with spiking and non-spiking agents in the Iterated Prisoner’s
Dilemma by exploring the conditions required to enhance its cooperative
outcome. According to the results, this is enhanced by: (i) a mixture of
positive and negative payoff values and a high discount factor in the case
of non-spiking agents and (ii) having longer eligibility trace time constant
in the case of spiking agents. Moreover, it is shown that spiking and non-
spiking agents have similar behaviour and therefore they can equally well
be used in any multiagent interaction setting. For training the spiking
agents, a novel and necessary modification enhances competition to an
existing learning rule based on stochastic synaptic transmission.

1 Introduction

Multiagent Reinforcement Learning (MARL) is a problem that has been stud-
ied extensively during the last few years. The problem lies in the dynamic en-
vironment created by the presence of another learner. In MARL there could be
different kinds of situations: fully competitive (which could be modelled with
zero-sum games), fully cooperative (which could be modelled with team games)
or a mixture of both (which could be modelled with general-sum games). Each
situation has different problems, so an active community has been designing al-
gorithms to address all of them. Some examples include minimax-Q [1], Nash-Q
[2], Joint Action Learners [3], FoF-Q (Friend-or-Foe Q) [4], WoLF-IGA (Win or
Lose Fast - Infinitesimal Gradient Ascent) [5], CE-Q (Correlated Equilibria Q)
[6], FMQ (Frequency Maximum Q) [7], GIGA-WoLF (Generalised IGA - WoLF)
[8] and AWESOME (Adapt When Everybody is Stationary Otherwise Move to
Equilibrium) [9]1. A lot of work is focused in deriving theoretical guarantees,
1 For a comprehensive coverage of MARL algorithms see [10] and references therein.
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based on different sorts of criteria such as rationality and convergence [11] or
targeted-optimality, safety and auto-compatibility [12]. Since the problem is not
very well-defined, Shoham et al. [13] attempted to classify the existing work by
identifying five distinct research agendas. They argued that when researchers
design algorithms they need to place their work under one of these categories.
Subsequently some work did focus on specific agendas (e.g., [14]), but more agen-
das were proposed [15]. In addition, the original agendas [13] have been criticised
that they may not be distinct, since they may complement each other ([16], [17]).
Stone [18] extended the criticism by arguing that the game theoretic approach
is not appropriate in complex multiagent problems. Despite these criticisms, our
study lies in the original prescriptive non-cooperative agenda [13], which asks
how the agents should act to obtain high rewards for a given environment.

Reinforcement learning (RL) has successfully been applied to spiking neural
networks (NNs) in recent years. These techniques try to incorporate reward dis-
tribution according to the biological processes of neurons. Although their degree
of experimental justification varies and they need to be further assessed, all these
methods are biologically plausible and provide the basis for applying RL on bio-
logically realistic neural models as well as the inspiration for further and better
integration of RL into the spiking models. Imaginative approaches to the subject
include: (i) the reinforcement of irregular spiking [19], where the learning rule
performs stochastic gradient ascent on the expected reward by correlating the
fluctuations in irregular spiking with a reward signal and (ii) the employment
of a spike-timing-dependent synaptic plasticity rule [20], in order to achieve RL
by modulating this plasticity through reinforcement signals ([21],[22]). In our
study, we use a variation of Seung’s RL on spiking NNs [23], which reinforces
the stochasticity present in the process of synaptic transmission. To the best of
our knowledge, this is the first time that a spiking neural model with biologically
plausible learning simulates a game theoretical situation.

The current study investigates cooperation between self-seeking reward agents
in a non-cooperative setting. This situation can be modelled with the Iterated
Prisoner’s Dilemma (IPD) which is a general-sum game. Although the coopera-
tive outcome is a valid equilibrium of the IPD, our study does not aim to assess
the strength of the learning algorithms to attain equilibria of the game or best
responses to any given strategy. Instead, we focus on mutual cooperation and
see whether it can be achieved by spiking and simple non-spiking agents trained
with RL and attempt to compare them. It is very interesting and beneficial to
understand how and when cooperation is achieved in the IPD’s competitive and
contradictive environment, as it could then become possible to prescribe opti-
mality in real life interactions through cooperation, analogous to the IPD. In its
standard one-shot version, the Prisoner’s Dilemma [24] is a game summarized
by the payoff matrix of Table 1. There are 2 players, Row and Column. Each
player has the choice of either to “Cooperate”(C) or “Defect” (D). For each pair
of choices, the payoffs are displayed in the respective cell of the payoff matrix of
Table 1. In game theoretical terms, where rational players are assumed, DD is
the only Nash equilibrium outcome [25], whereas only the cooperative (CC) out-
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Table 1. Payoff matrix of the Prisoner’s Dilemma game with the values used in our
experiments. Payoff for the Row player is shown first. R is the “reward” for mutual
cooperation. P is the “punishment” for mutual defection. T is the “temptation” for
unilateral defection and S is the “sucker’s” payoff for unilateral cooperation. The only
condition imposed to the payoffs is that they should be ordered such that T>R>P>S.

Cooperate (C) Defect (D)

Cooperate (C) R(=4),R(=4) S(=-3),T(=5)

Defect (D) T(=5),S(=-3) P(=-2),P(=-2)

come satisfies Pareto optimality [26]. The “dilemma” faced by the players in any
valid payoff structure is that, whatever the other does, each one of them is better
off by defecting than cooperating. The outcome obtained when both defect how-
ever is worse for each one of them than the outcome they would have obtained if
both had cooperated. In the IPD, an extra rule (2R>T+S) guarantees that the
players are not collectively better off by having each player alternate between C
and D, thus keeping the CC outcome Pareto optimal. Moreover, contrary to the
one shot game, CC can be a Nash equilibrium in the infinite version of the IPD.

As pointed out in [27] “perfectly predicting the environment is not enough to
guarantee good performance”, because the level of performance depends partly
on properties of the environment. In our case, we believe that the property of
the environment which plays a significant role in the CC outcome is the reward
function, since it specifies the type and strength of the reinforcement the agents
receive. By experimenting with the payoff matrix we observed that for the non-
spiking agents it is beneficial to mix positive and negative values. The payoff
values used in both spiking and non-spiking simulations are shown in Table 1.

The remainder of the paper is organised as follows. Section 2 describes our
methodology for both spiking and non-spiking simulations. The results are pre-
sented and analysed in Section 3, while the last section gives the conclusions.

2 Methodology

2.1 Agents as Lookup Tables and Non-Spiking Neural Networks

We mainly focus on Q-learning [28], a simple reinforcement learning algorithm.
There are two ways of storing the Q values (i.e., the estimates of how good the
state-action pairs are), either in a lookup table (LT) or inside a function approxi-
mator, such as a NN. When the search space is small, LTs are preferred, because
they are much faster. However, for large search spaces, function approximators
are the only choice, because it is impossible to store every possible state-action
pairs, due to memory constraints. According to Sandholm and Crites [29], LTs
yield better results and are faster than simple recurrent NNs in the IPD. The
multiagent system can be either homogeneous or heterogeneous. A homogeneous
system exists when both agents employ the same strategy or learning algorithm,
with the same or similar parameters, which in our case are the discount factor
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(γ) and the memory type which could either be an LT or a feedforward NN.
In contrast, a heterogeneous system exists when either both agents employ the
same algorithm with dissimilar parameters, or different algorithms. The opposing
agents could be TD (Temporal Difference) [30], SARSA (State-Action-Reward-
State-Action) [31] or Q-learning. The agents are provided only with incomplete
information: they receive only the state of the environment, i.e., the actions of
both the agent and the opponent in the previous round, but not the payoffs asso-
ciated with each action. A Boltzmann exploration schedule is utilised, as it gives
a good balance between exploration and exploitation. Specifically, an action ai

is selected from state s with probability p(ai) given by equation (1):

p(ai) =
eQ(s,a)/t

∑

a∈{C,D}
eQ(s,a)/t

(1)

where the temperature t is given by t = 1 + 10 × 0.995n, with n being the
number of games played so far. The constants 1, 10 and 0.995 are chosen empir-
ically. Each NN input is represented by 4 bits (thus 4 nodes), because according
to the experiments in [29], this “unary encoding resulted in faster learning than
a two-bit binary” one. Each bit is active depending on whether the previous
action of the agent and the opponent was C or D. The network has 2 linear
outputs corresponding to the estimates of the actions available in the game. One
hidden layer with 3 sigmoidal activation function units is used and the network
is trained by backpropagation as in [32], but with a single network.

2.2 Agents as Spiking Neural Networks

The game simulation is repeated with the two players implemented by two spik-
ing NNs. The networks’ architecture is depicted in Fig. 1. Each network has
two layers of leaky integrate-and-fire (LIF) neurons. The equation and values
of the parameters used for modelling the LIF neurons are the same as in [23],
apart from the value of the mean weight of the conductance used for the exci-
tatory synapses which is set to 14nS. Both networks receive a common input of
60 Poisson spike trains grouped in four neural populations. The networks learn
simultaneously but separately where each network seeks to maximise its own ac-
cumulated reward. Learning is implemented through reinforcement of stochastic
synaptic transmission as in [23], where the model is developed along the hypoth-
esis that microscopic randomness is harnessed by the brain for the purposes of
learning. Briefly, within the model’s framework, each synapse acts as an agent
pursuing reward maximisation through the actions of releasing or not a neuro-
transmitter upon arrival of a presynaptic spike. Each synapse records its recent
actions through a dynamical variable, the eligibility trace [33], the time constant
of which essentially reflects the way each synapse integrates time-related events.
The input to the system is presented for 500ms and encodes the decisions the two
networks had at the previous round. One can identify here a cyclic procedure
which starts when the networks decide, continues by feeding this information
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Network I Network IIInput

Output 1

Output 2

Output 3

Output 4

Fig. 1. Two spiking Neural Networks of Hedonistic Synapses and multilayer-type ar-
chitecture compete in the IPD. Each network has two layers of hedonistic synapses
that make full feedforward connections between three layers of neurons: the 60 shared
input neurons, 60 leaky integrate-and-fire (LIF) hidden neurons and two LIF output
neurons, randomly chosen to be either excitatory or inhibitory.

to the networks during which learning takes place and ends by a new decision.
Each network’s decision is encoded in the input, by the firing rate of two groups
of Poisson spike trains. The first group will fire at 40Hz if the network cooper-
ated and at 0Hz otherwise. The second group will fire at 40Hz if the network
defected and at 0Hz otherwise. Consequently, four groups of Poisson spike trains
provide the system’s input with two groups always being active, preserving thus
a balance at the output neurons’ firing rates at the beginning of learning. Any
significant difference in the output neurons’ firing rate at any time should only
be induced by learning and not by the differences of the driving input firing
rates. At the end of each learning round the networks decide whether to coop-
erate or defect for the game’s next round, according to the value each network
assigns to the two actions. These values are reflected by the output neurons’
firing rates at the end of each learning round. The cooperation value for network
I and II is taken to be proportional to the firing rate of output neurons 1 and
3 respectively. Similarly, the defection value for network I and II is taken to be
proportional to the firing rate of output neurons 2 and 4 respectively. When the
two networks decide their play for the next round of the IPD, they each receive a
distinct payoff given their actions and according to the game’s payoff matrix (see
Table 1). This same payoff is also the global reinforcement signal (scaled down)
that will train each network during the next learning round and thus guide the
networks to their next decisions. Since the learning algorithm works with pos-
itive and negative reinforcements that are directly applied to the synapses and
are extracted from the payoff matrix, it is then necessary that the payoff ma-
trix contains both positive and negative values. Each network is reinforced for
every spike of their output neuron that was “responsible” for the decision at the
last round and hence for the payoff received. The networks thus learn through
global reinforcement signals which strengthen the value of an action that elicited
a reward and weaken the value of an action that resulted to a penalty.

In order to enhance competition between output neurons during a learning
round, Seung’s algorithm [23] is extended with additional global reinforcement
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signals administered to the networks for every output neuron spike not “respon-
sible” for the decision. In the CD case for example, an additional reward of +1.15
is provided to network I for every spike of output neuron 2 and an additional
penalty of -1.15 is provided to network II for every spike of output neuron 3.
The value of the action that was not chosen by each network is therefore also
updated, by an opposite in sign reinforcement signal. The value of 1.15 applies
to all outcomes and is chosen to be small enough such that: (i) any changes
to the values of the players’ actions are primarily induced by the reinforcement
signals provided by the payoff matrix and (ii) not to cause IPD rules’ violation.

Overall during a learning round, each network receives global, opposite in sign
reinforcements for spikes of both of its output neurons. One of the two signals is
due to the game’s payoff matrix and its aim is to “encourage” or “discourage”
the action that elicited reward or penalty and the other signal is complementary
and its aim is to “encourage” or “discourage” the action that could have elicited
reward or penalty if it had been chosen in the previous round of the game.

3 Results and Discussion

3.1 Lookup Table and Non-Spiking Neural Network Agents

The step-size parameter α, the backpropagation learning rate η and the discount
factor γ were empirically set to 0.9 for all agents, as this showed good behaviour
with fast convergence, especially when using LTs. Low α and η values, such as
0.1, prevented in some cases the algorithms from converging to the CC outcome.
This may be due to the exploration schedule and more specifically to t (see eqn.
1) dropping at a level where no further exploration takes place. The games were
run for 50 trials with 2000 rounds per trial.

As mentioned in Section 2.1, a multiagent learning system may either have
homogeneous or heterogeneous settings. In homogeneous settings we test 3 Q-
agents in self-play: 1) Q(LT, γ=0.9); 2) Q(LT, γ=0.1) and 3) Q(NN, γ=0.9).
In heterogeneous settings we test 6 cases: 1) Q(LT, γ=0.9) vs TD(LT, γ=0.9)
- different algorithm; 2) Q(LT, γ=0.9) vs SARSA(LT, γ=0.9) - different algo-
rithm; 3) Q(LT, γ=0.9) vs Q(LT, γ=0.1) - different γ; 4) Q(NN, γ=0.9) vs
Q(LT, γ=0.9) - different memory type; 5) Q(NN, γ=0.9) vs TD(LT, γ=0.9)
- different algorithm and memory type and 6) Q(NN, γ=0.9) vs SARSA(LT,
γ=0.9) - different algorithm and memory type 2. Fig. 2 depicts the results taken
when ranking all these cases based on the percentage of CC. The results suggest
that normally more cooperation can be achieved in homogeneous environments.
Moreover, LTs with high γ obtain better results (93%) than (i) NNs with high
γ (67%) and (ii) LTs with low γ (49%). This may be because (i) LTs are sim-
pler and more suitable than NNs in our simple environment and (ii) a higher γ

2 It is worth noting that we could not evaluate SARSA and TD agents with NNs,
nor Q with NN and a low γ (=0.1) or in some cases with many hidden nodes such
as 10, because the algorithm diverges, since the NN weights are driven to infinity.
Divergence problems are known to exist in RL with function approximators and some
solutions were proposed to deal with them (see [34]; [35] and references therein).
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Fig. 2. Performance of Q vs Learning agents in homogeneous and heterogeneous en-
vironments ranked based on the CC percentage. Highest CC is achieved when an LT
farsighted Q-agent (i.e., with a high discount factor γ) competes in self-play.

makes the agents take future rewards into account more strongly, which leads
to an enhanced mutual cooperation. A successful heterogeneous case is the one
where a Q agent competes with a SARSA, both with LTs and γ=0.9; in this
case CC gets 86%. However, when the Q agent uses a NN, CC drops dramati-
cally to 24% and DD rises from 6% to 31%. The “strongest” algorithm in our
case (i.e., Q-learning) accumulates more reward, since DC occurs in 31% of the
rounds, whereas CD only in 14%. TD can be considered very weak when eval-
uated against Q-learning, as the latter manages to learn a better policy that
exploits the weakness of its opponent. This is illustrated by the high DC per-
centages, in contrast with the low CD percentages. The interesting case of Q
agents with LTs, with the row player being more farsighted than the column
player, shows that being myopic does not mean that more unilateral defection
would be played, as indicated by the percentages of DC (36%) and CD (4%).
However, one may suggest that in this case a myopic agent in effect finds a worse
policy, as it accumulates less payoff than the farsighted one. This is in line with
the fact that in general, farsighted agents should accumulate more reward in the
long-term than myopic ones. Finally, when an NN is compared with an LT, CC
gets 54%. The reason for this could be in the difference in policy learning by the
agents given that the LT learns faster than the NN agent and accumulates more
reward (CD>DC). Fig. 3a illustrates the accumulated net payoffs over time for
two homogeneous cases, one with a farsighted and one with a myopic Q agent,
both with LTs evaluated in self-play. It is clearly evident that in the case of the
farsighted agent the accumulated payoff of the system is higher than the case of
the myopic agent, which together with the results as presented in Fig. 2, support
that CC is higher for farsighted agents.

3.2 Spiking Neural Network Agents

For the system configuration described in Section 2.2 a single game of the IPD
consists of 200 rounds during which the two networks seek to maximise their
individual accumulated payoff by cooperating or defecting at every round of the
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game. This simulation aims to investigate the capability of the spiking NNs to
cooperate in the IPD. Two simulations were performed with the synapses of
the two networks having different eligibility trace time constants which reflect
how the networks integrate time related events and thus associated with the
“memory” each network has. The values for both networks were set to 20ms and
2ms for the two simulations respectively. Therefore, during the first simulation
the networks have a “good memory” whereas in the second one a “weak mem-
ory”. The results of both simulations are shown in Fig. 3b. The difference in the
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Fig. 3. Accumulated Payoff with: (a) non-spiking Q-agents (LTs) with the two players
having a discount factor of 0.9 (solid line) and 0.1 (dotted line); (b) with spiking NNs
with the two players having eligibility trace time constants 20ms (solid line) and 2ms
(dotted line).

system’s performance is evident. When the system was configured with 20ms eli-
gibility trace time constants, the accumulated payoff is much higher than the one
with 2ms; this results from the difference in the cooperative outcome. With the
eligibility trace time constants set at 20ms the two networks learned quickly to
cooperate in order to maximise their long-term reward and achieved the CC out-
come 182 out of the 200 times. On the contrary, when the system was configured
with “weak memory”, learning took effect much later during the game (after the
100th round) and thus the system resulted in exhibiting much less cooperation
(120 out of 200). However, the system with both configurations eventually man-
aged to learn to cooperate. It is noted that the CC outcome not only persisted
during the final rounds of the simulations, but it also did not change after a
point (much earlier in the first case) due to the system’s dynamics that were
evolved by that point in time in such a way to produce CC consistently. Results
show that agents’ memory influences the cooperative outcome of the game in
the sense that it delays it to a great extent. However, a weak memory does not
destroy learning as the networks eventually learned to cooperate.

4 Conclusions

Our results indicate that the system accumulates higher cooperative reward
when both agents have: (i) higher discount factor, in the case of non-spiking
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agents, or (ii) “stronger” memory, as in the case of the spiking agents with
longer eligibility trace time constant. One may suggest that the effect of the dis-
count factor in the non-spiking agents is equivalent to the effect of the “synaptic
memory” of the spiking agents resulting from the use of eligibility traces, despite
the fact that the former refers to future predictions, whereas the latter to past
events. Based on this assumption, one could explain the more frequent emerging
of the cooperative outcome with high values of eligibility trace time constant and
discount factor, in the spiking and non-spiking systems respectively. However, in
order to make a direct comparison between the spiking and non-spiking systems
we could either use eligibility traces in the Q-learning algorithms [28], or employ
TD learning in our spiking NNs as in [36].

According to the results, apart from being desirable for the non-spiking agents
to be farsighted in order to achieve the pareto-optimal outcome of the game (as
mentioned above), they should also use LTs where possible (since LTs enable the
system to converge faster and more accurately) and have learning algorithms of
the same or of similar “strength” (such as both Q, or one Q and one SARSA). In
the case of spiking agents, it has to be noted that our extension of the reinforce-
ment of stochastic synaptic transmission of Seung [23], by enhancing competition
between output neurons (see Section 2.2) through concurrently applying a pos-
itive global reinforcement to one output and a negative global reinforcement to
the other output is both novel and necessary. More specifically it is essential,
so as to avoid a positive feedback effect which would have increased the synap-
tic strength without bounds, leading to saturation of the synaptic connection
and thus preventing further learning from taking place (like the limitation of
classical Hebbian learning). Therefore one could conclude that in cases where
more than one neuron competes for reinforcement in a spiking NN, the global
evaluation signal of Seung’s reinforcement of stochastic synaptic transmission
[23], should consist of global reward and penalty accordingly, for avoidance of
possible synaptic saturation. In addition, it is also desirable for the payoff ma-
trix for the non-spiking agents to mix positive and negative values (as in [37]),
which if viewed as another technique of introducing competition into the system
(as above), it could explain the enhancement of the cooperative outcome. As
mentioned in Section 2.2, this mixture is necessary for the spiking agents.

In general, as it can be seen from the results, the behaviour of spiking and
non-spiking agents is in effect similar (Fig. 3). We could therefore argue, that
spiking agents could equally well be used in multiagent interactions as non-
spiking agents. Certainly, a spiking agent system is more computationally ex-
pensive and should only be used when the task in question demands more bio-
logically realistic models. For example, we have used a spiking multiagent system
in modelling the high level behaviour of self-control [38].
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